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Abstract. Combining neural and symbolic features in a single Neuro-Symbolic (NeSy) AI reasoning system has shown the
promise to bring the best of both worlds, yielding higher robustness and explainability. Yet, while NeSy reasoning has been
shown to be effective on various tasks, its strengths and weaknesses for the traffic domain have not been systematically explored.
To bridge this gap, we consider the promises and the challenges of NeSy reasoning in the traffic domain. We devise a taxonomy
of traffic tasks that is organized into three categories: safety, perception, and diagnostic/complex inference. We consider these
tasks from two perspectives: autonomous vehicles, where the goal is to minimize navigation errors of vehicle participants in
traffic, and traffic monitoring, where the goal is to understand situations and their implications from a perspective of a third-
person view. We investigate the role of NeSy reasoning for these tasks, aiming to understand its role in connecting different
modalities, providing coherent explanations, supporting meaningful evaluation, and facilitating generalization to novel situations
in the open domains. We consider the role of different knowledge types, including traffic rules, commonsense expectations, and
causal links, in facilitating robust and explainable AI agents. We conclude with a list of open research directions geared towards
reliable NeSy reasoning for traffic, tailored to social good and human-AI collaboration.

Keywords: neuro-symbolic reasoning, explainable AI, commonsense knowledge, intelligent traffic monitoring, autonomous
driving, monitoring ML systems

1. Introduction

Developing reliable intelligent agents for the traffic domain has been an attractive pursuit due to the high-stake
nature of this domain and the magnitude of its market [1]. While intelligent traffic agents leveraging the latest neural
or symbolic advancements perform well in the lab, real-world usage has been marked with notorious examples that
show that their reliability is far from the desired mark. A notable example of autonomous driving is the Uber
fatality [2], which occurred due to the system focusing on a single modality (the perception system), rather than
fusing multiple modalities of sensory information. Besides fusing multi-sensory information, the Uber accident
shows a larger issue: autonomous vehicle may not know how to deal with inconsistent or unknown situations.
For example, if an autonomous vehicle perceives an unknown object or faces a novel situation (e.g., an unknown
traffic signal, like a flashing yellow light [3]), it may react in unpredictable ways. It may choose to ignore unknown
objects [2] or extrapolate novel situations to prior experiences based on its underlying pattern-matching mechanisms.
An example of the latter behavior is the accident of the Google Autonomous Vehicle (AV) in 2016, caused by the AV
switching lanes after detecting sand bags.1 Similarly, considering the related task of traffic monitoring, a processing

1https://www.wired.com/2016/02/googles-self-driving-car-may-caused-first-crash/, accessed on July 12, 2023.
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system may detect that a vehicle and a bike lane overlap, but it would not be able to deduce that this represents a
traffic violation. Moreover, the intelligent system may fail to understand certain context-specific behaviors [4] that
happen in particular locations or at particular times. These experiences highlight the imminent need for reliable
systems that are robust, explainable, and responsible. Merely relying on gathering sufficient data for each of these
specific scenarios is unrealistic [5], thus emphasizing the need for novel approaches.

Meanwhile, Neuro-Symbolic (NeSy) reasoning, or the integration of neural and symbolic reasoning has become
a staple of artificial intelligence and is often considered essential for robust intelligence in high-stake domains [6].
Given the high stake nature of the traffic domain, NeSy robust intelligence is a necessity for autonomous vehicles
and traffic monitoring systems that are being entrusted with human-level decision-making. We see NeSy as a holis-
tic platform to address these challenges in the traffic domain. By leveraging NeSy reasoning in both ego-centric
autonomous driving and objective traffic monitoring, the traffic domain can benefit from advanced decision-making
capabilities, enabling safer and more efficient transportation systems. NeSy addresses the knowledge integration
problem of neural networks by supporting the fusion and abstraction of diverse information sources [7, 8]. This is a
hallmark task for autonomous driving and the traffic domain where there are different types of information, includ-
ing those from sensors, vision, and log data. In fact, there are autonomous driving data sets that have this type of
multimodal data [9, 10]. By synthesizing such diverse and complementary types of information, symbolic reasoning
enables them to be associated with domain-specific knowledge and rules, such as traffic regulations and traffic flow
principles. It also enables integration with commonsense knowledge that may enable the models to generalize better
to novel situations [11, 12]. NeSy reasoning provides an opening for the resulting models to be explainable, by
transforming the explicit knowledge into human-readable format; adaptive, by leveraging the knowledge to transfer
better to novel situations; responsible, by providing a mechanism for communication with the model in a mean-
ingful way; and collaborative, by facilitating the extraction and representation of meaningful information [13]. Yet,
while NeSy reasoning has been shown to be effective in various domains, its strengths and weaknesses for the traffic
domain have not been systematically explored.

In this paper, we investigate the role of NeSy reasoning in addressing the complex challenges present in the traf-
fic domain. We first provide background about prior work on monitoring autonomous vehicles and relevant neuro-
symbolic methods (section 2). We focus on two core subproblems that stem from complementary perspectives:
autonomous driving (first-person view) and traffic monitoring (third-person view) (section 3). We show common
failures in both subproblems, and discuss the challenges and possible solutions highlighting the need for NeSy
representations and reasoning. We consider the following symbolic knowledge within broader NeSy solutions:
commonsense knowledge, rules, soft constraints, and causal reasoning. We describe their role to support better
robustness on novel tasks and explainability to relevant users (section 4). We conclude with a list of challenges that
motivate future work for NeSy reasoning in the traffic domain (section 5).

2. Background

Our paper examines NeSy challenges in the traffic domain. In the following sections, we describe the current
state of the subtasks: autonomous vehicles and traffic monitoring, and we provide background on knowledge graphs.
Namely, for the remainder of the paper, we will examine traffic domain tasks from two perspectives. Autonomous
vehicles will be in the “first person view”, meaning we are considering one autonomous vehicle at a time, typically
from the perspective of the AV itself. When we talk about a larger world view, e.g., the “third person view,” that
means that we are considering traffic situations from an objective standpoint, e.g., a stationary camera.

We provide background on common representation and aggregation methods in the form of knowledge graphs
to explore the synthesis of NeSy approaches and their potential application in traffic domain challenges. We do
not focus on novel neural architectures for end-to-end training of autonomous vehicles and traffic monitoring sys-
tems [14], as these are consistently changing and have been covered well in recent survey papers for first-person
driving [15], object recognition [16], and for safe driving [17], as well as broad surveys on NeSy methods and
challenges [18–20].
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2.1. The Current State of Autonomous Vehicles

Although there have been optimistic promises of fully autonomous vehicles in 5-10 years,2 autonomous vehicles
learn and drive differently than humans do. Autonomous vehicles are susceptible to failures, especially out-of-
domain errors. There are many ways to “fool” an autonomous vehicle [21], and the failure cases cannot be enumer-
ated.3 There have been developments towards test suites of plausible failure modes [24], but creating more accurate
failure detection techniques is not enough. The underlying systems need the capability to introspect about their own
behavior and learn through experience. For example, in the Uber self-driving accident, a software system within the
AV ignored the pedestrian detected by the LiDAR sensor to be a false positive detection, resulting in a pedestrian
fatality [2]. The software system lacked the common sense to know that an object moving in the middle of the road
is likely a pedestrian. The autonomous vehicle should learn from this mistake and ensure it will not be a repeated
failure case. NeSy reasoning can be used to integrate symbolic rules with multimodal vehicle and traffic data.

Human drivers are also susceptible to failures. But human drivers fail differently than autonomous drivers. Human
drivers are able to adapt to driving in new environments. Humans learn new driving rules by examining the context
and reflecting on their behavior: they explain the best action or its alternative to themselves. Take, for example,
the behavior of “flashing high beams.” Based on the location, context, and social rules, we may apply an existing
rule (if a neighboring car is flashing its high beams, then turn on the vehicle’s headlights), or we may create a new
rule based on a new explanation (e.g., since they are flashing their high beams aggressively, that means to watch
out for something). NeSy enables systems to continuously adapt and refine their knowledge based on real-world
interactions.

2.2. The Current State of Traffic Monitoring

Intelligent traffic monitoring has a wide range of use cases, which typically assume the existence of video footage
from a stationary surveillance camera. The intelligent system needs to be able to understand the elements of a scene
in a given moment, understand whether it depicts an anomalous configuration (e.g., an accident or some other event),
and perform diagnostics and complex inference through tasks like introspection and forecasting. Most of the state-
of-the-art methods have focused on perceptual tasks (e.g., identifying the number of lanes and segmenting the traffic
participants in a scene), whereas more complex reasoning tasks have received little attention. As a result, there has
been progress in terms of perceptual and simpler classification tasks, whereas more extensive reasoning remains
out of the reach of current technology. The first causal reasoning task for traffic monitoring has been BDD [25],
followed by the TrafficQA [26] task that requires six forms of complex inference, and by the suite of knowledge-
intensive textual inference tasks proposed by Zhang et al. [5]. The reason behind this discrepancy is that techniques
for causal inference and commonsense reasoning have not been applied to traffic monitoring, and learning complex
inference from data directly is non-trivial [5, 26].

2.3. Knowledge Graphs for Aggregating Symbolic Knowledge

Knowledge graphs can provide a comprehensive representation of the complex factors that influence traffic safety.
This allows us to identify patterns, correlations, and potential risks that would otherwise be difficult to discern. Rea-
sonable knowledge can be provided to the monitoring system from a commonsense knowledge base. In the adaptable
monitoring system, this knowledge is parsed into a web standard. Commonsense knowledge bases are key tools for
developing systems that understand natural language descriptions and produce explanations. CYC is regarded as
the world’s longest-lived artificial intelligence project [27], with a comprehensive ontology and knowledge base
with basic concepts and “commonsense rules,” but there have been significant challenges to using CYC for real-
world applications in natural language processing (NLP) and computer vision (CV) [28], including its proprietary
nature and the difficulty of grounding of situations to CYC. Speer and Havasi [29] contributed ConceptNet5, a

2In May 2018, Andrew Ng said that autonomous vehicles are “here”: https://medium.com/@andrewng/
self-driving-cars-are-here-aea1752b1ad0

3Some examples are security hacks [22], or adversarial attacks [23]

https://medium.com/@andrewng/self-driving-cars-are-here-aea1752b1ad0
https://medium.com/@andrewng/self-driving-cars-are-here-aea1752b1ad0
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Table 1
Example tasks for first (1st) person view (autonomous vehicles) and third (3rd) person view (traffic monitoring) that demonstrate the need NeSy
Representations and Reasoning.

Task Classification View Sample Challenge

Safety 1st Pass a dynamic driving test for autonomous vehicles.
Safety 3rd Understanding of rare road events, e.g., extreme weather.
Perceptual 1st Classify out-of-domain objects in the AV’s vicinity.
Perceptual 3rd Understanding elements of traffic scenes based on perception (e.g., number of vehicles).
Inference 1st Introspection: sensory failure, NeSy for reliance on secondary modalities
Inference 3rd Establishing links between observed events and their likely causes.

Fig. 1. Our taxonomy of traffic tasks: safety, perceptual, and inference.

freely-available semantic network of popular commonsense knowledge. The combination of popular commonsense
knowledge sources into a single graph, as done within the CommonSense Knowledge Graph [30] and NextKB [31]
provides an opportunity for richer and more comprehensive knowledge to be used for reasoning in traffic. The ag-
gregated commonsense knowledge can be further organized into high-level knowledge dimensions [32] and aligned
with commonsense axioms [33]. Meanwhile, domain knowledge can be distilled from driving manuals to improve
the model’s understanding of traffic rules and situational constraints. Combining these complementary kinds of
knowledge is expected to enhance the comprehension of ambiguous or contextually rich language by providing
contextual cues and background information [5].

3. Traffic Understanding Needs NeSy Representations and Reasoning

Traffic understanding is a complex multimodal challenge consisting of object detection and classification, object
localization, trajectory prediction, sensor fusion, and planning. Traffic understanding encapsulates a unique blend of
low-level perception tasks [15] and human-level symbolic reasoning and cognition [34], making it a neuro-symbolic
goal. Curiously, despite the importance of reliable traffic understanding, there is no clear organization of the tasks
within this domain. We bridge this gap by organizing the traffic understanding tasks into a taxonomy in Figure 1. Our
taxonomy has three categorizations of tasks: Safety tasks (in Section 3.1), Perceptual tasks (in Section 3.2), and
Inference tasks (in Section 3.3). Each of these task categories has been considered from an ego-centric perspective
of an autonomous vehicle (first-person view) and from a perspective of a traffic observer like a camera (third-person
view), resulting in corresponding variants. Table 1 shows first- and third-person view examples for each of the three
traffic task categories. We next review the tasks within each category in turn.
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3.1. Safety

Safety in traffic domain tasks is of the utmost importance, as traffic fatalities are increasing,4 and as of recently,
traffic fatalities are at a 16-year high.5 One of the promises of intelligent traffic monitoring and autonomous ve-
hicles is to reduce driving fatalities and develop driver assistance technologies, which could mitigate injury and
harm. However, safety in the traffic domain requires real-time analysis (data-driven neural processing) and decision-
making (symbolic reasoning), making it suitable for the integration of neural and symbolic techniques. For example,
consider a traffic monitoring system that is reporting on current traffic conditions, but it is unreliable in weather
conditions like rain, sleet, and snow. Neural networks may struggle to learn patterns in these situations, and incor-
porating symbolic reasoning can help handle mitigate and explain these extreme situations.

One challenge for autonomous vehicles is to create dynamic driving tests, which mimic how human drivers are
evaluated as safe or unsafe drivers. For example, when humans learn to drive, we start by memorizing a set of safe
driving rules from a driving handbook. Recent work has learned these safe driving rules from manuals [35], in order
to codify and standardize these behaviors in a common symbolic language. Generative models, such as Generative
Adversarial Networks (GANs) [36] or Variational Autoencoders (VAEs) [37], have the ability to learn the underlying
distribution of driving data and generate new samples that resemble real-world driving situations. These generative
models can be combined with a symbolic system to create dynamic “dangerous” driving conditions [38], e.g.,
construction zones, sporadic pedestrian crossings, etc. Previous work on reasonableness monitors [39, 40], checked
and validated reasonableness with a production-level reasoner [41]. It is essential to use these generated tests in
conjunction with real-world testing and validation, including diagnostics (see Section 3.3), to ensure the safety and
reliability of autonomous driving systems. Driving tests have recently been introduced from an objective monitoring
perspective, prompting agents to select the legal or reasonable course of action in a given situation [5]. Namely, the
HDT-QA benchmark tests intelligent agents on human-driving tests for three driver categories (Motorcycle, Car,
and Commercial Driver) in each of the 50 US states.

Another task for ensuring safety in both AVs and traffic monitoring scenarios is event detection, i.e., understand-
ing anomalous situations and extreme environments. Datasets and challenges for event detection should include
various road types, traffic conditions, weather conditions, pedestrian interactions, and other potential hazards. In-
telligent traffic monitoring datasets have initially focused on detecting the occurrence of a certain event (e.g., an
accident). DeepRacer is an educational platform for autonomous vehicle racing, designed primarily to experiment
with reinforcement learning methods in intelligent control systems [42]. ROAD: The Road Event Awareness Dataset
for Autonomous Driving [43], has been designed to test the autonomous vehicle’s understanding of road events. Its
successor, ROAD-R, is a neuro-symbolic autonomous driving dataset that investigates whether the models remain
safe and consistently follow the environmental constraints throughout their performance [44]. One possible ap-
proach for tasks like ROAD-R is to design and implement memory-efficient t-norm losses for the task of event
detection in autonomous driving. CADP [45] is a spatiotemporally annotated dataset for accident forecasting using
traffic camera views. The Berkeley Deep-Drive dataset (BDD) contains real driving videos containing abundant
driving scenarios [25], where the task of the agent is to recognize the action in the video (e.g., the vehicle is acceler-
ating). There have been many other datasets for anomaly detection in road traffic using visual surveillance, surveyed
in [46]. Event detection in traffic is a crucial aspect that helps identify potential hazards and inform decision-making
processes, but addressing the challenges faced by AVs and traffic monitors requires a comprehensive approach
encompassing various safety, technological, and regulatory considerations.

3.2. Perception

The fusion of neural networks and symbolic reasoning plays a crucial role in machine perception. Perception tasks
have been a challenge of NeSy reasoning over AI history, from early machine vision systems [47, 48] to cutting-
edge standardized models of human cognition [49]. In the traffic domain, perception tasks are the primary task:

4In CA, traffic fatalities increased from “approximately 7.6% from 3,980 in 2020 to 4,285 in 2021.” via https://www.ots.ca.gov/
ots-and-traffic-safety/score-card/

5Via https://www.nhtsa.gov/press-releases/early-estimate-2021-traffic-fatalities

https://www.ots.ca.gov/ots-and-traffic-safety/score-card/
https://www.ots.ca.gov/ots-and-traffic-safety/score-card/
https://www.nhtsa.gov/press-releases/early-estimate-2021-traffic-fatalities
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recognizing objects, pedestrians, road signs, traffic lights, and other vehicles. While many traffic systems use end-
to-end learning [14], we often require additional (symbolic) reasoning to make trustworthy decisions. For example,
consider driving in a new rural environment. The vehicle may encounter an object it has never seen before: a fallen
tree branch. Since the vehicle has not seen this object before, it chooses to ignore it, causing the vehicle to run over
the branch, which gets stuck in its undercarriage, preventing the vehicle from moving properly.

Scene understanding can be seen as an umbrella task that encapsulates many of the visual perception tasks
into a common framework. Several datasets focus on a fine-grained understanding of the environment, such as
object segmentation [50, 51] and scene entity prediction [52]. The Stanford Cars dataset [53] contains 3D object
representations for fine-grained categorization. The VERI-Wild [54] dataset evaluates the ability of vision models to
re-identify vehicles in surveillance camera footage. The related Stanford Drone Dataset [55] tests systems’ ability to
predict human trajectories in crowded scenes. TrafficQA [26] consists of over 60K QA samples based on over 10k
traffic scenes. Most of the questions in this dataset belong to the category of basic understanding, e.g., how many
lanes are there on the freeway? The successful completion of these traffic understanding tasks lays the foundation
for addressing the out-of-domain challenges of autonomous vehicle perception.

The main challenge in traffic perception is handling out-of-domain classification. There are perception chal-
lenges for autonomous vehicles [9], but these are classic supervised machine learning tasks: with a training and
test dataset. These do not characterize the unique challenges in perceiving new objects while driving. For example,
consider an autonomous vehicle driving through a new neighborhood. The perception sees a skateboard and cor-
rectly identifies the object. The problem is that the vehicle has no symbolic knowledge or context. As humans, we
know that if we see a skateboard in a neighborhood, then many children are likely following the skateboard. Other
challenges include adversarial attacks, where a few pieces of tape can fool the perception system into thinking a
stop sign is a 45-mph sign [56]. One way to mitigate perception challenges in intelligent traffic monitoring is to de-
velop representative datasets and understand the relation between task properties and the properties of the task [5].
Possible NeSy solutions include adding contextual symbolic information, e.g., the shape, size, and color of the sign,
or designing rule-based stress tests to find the point of failure [57]. Incorporating NeSy approaches into perception
systems for autonomous vehicles can create safer, more reliable vehicles in real-world environments.

3.3. Inference

Many realistic tasks require higher-order inference of factual or hypothetical aspects of a situation. Such inference
is analogous to model-based diagnostics in computer science [58, 59], which refers to the process of identifying and
analyzing problems, errors, software faults [60], or issues in complex computer systems. The goal of diagnostics
for AVs is to understand the root cause of a problem or malfunction and provide insights into how to resolve it
effectively, similar to the role of a highway patrol officer to patrol for unsafe driving conditions, or a mechanic to
monitor and maintain vehicles. A related task from a traffic monitoring perspective is simulating situations forward
or backward to enhance the model’s understanding of a situation. The quest for incorporating inference skills in
traffic agents represents a shift in paradigm, from the dominant focus on perception to understanding, which requires
abundant domain knowledge and commonsense reasoning methods.

In the AV domain, the task of introspective diagnostics has been popular, covering both factual and hypothetical
reasoning. For example, consider an introspective case of self-diagnosis where an autonomous vehicle is consis-
tently driving well on the freeway. When alerts or diagnoses appear, the vehicle can self-diagnose and repair the
problems without issues. However, the autonomous vehicle self-diagnosis system may have limitations in nuanced
situations like construction zones or missing lane markers, leading to potential errors that go unfixed or ignored.
For example, if a self-driving car’s sensory system fails due to weather [61], how can the vehicle rely on other
sensory modalities to safely continue its journey? In this case, it is crucial to have a comprehensive understanding
of an autonomous system, which a model-based system can represent. Autonomous vehicles claim to be “self-
diagnosing” [62, 63], they are able to find the root cause of their own errors and fix it. However, there is still a need
for model-based, or symbolic reasoning for, e.g., reasoning about plans [64] and hypothetical reasoning [65]. By
incorporating data-driven diagnosis with a model-based (symbolic) diagnostic system, users can be more confident
in the AV system’s trustworthiness and reliability.
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Table 2
Examples of BDD-QA, TV-QA, and HDT-QA from [5]. (*) denotes the correct answer.

BDD-QA
Q: The car in front of the car is slow, but the traffic is also heavy in other lanes, what will the car do next?
A1: The car speeds up and turns to the right; A2: The car moves back to the right side of the road; A3: The car slows down(*);
A4: The car backs up slowly

TV-QA
Description: The POV car is quickly going down a highway. The POV car approaches an intersection. There is a red sedan in the opposing
lane waiting to turn and cross the intersection. The red sedan quickly makes a left turn. when the POV car enters the intersection. The POV
car veers to the right. The red sedan hits the side of the POV car.
Q: Could the accident be prevented if the involved vehicles change lane or turn properly?
A1: Yes(*); A2: No, that was not the main cause of the accident

HDT-QA
Q: If you find yourself in a skid:
A1: Brake lightly; A2: Brake abruptly; A3: Stay off the brakes(*)

From a traffic monitoring perspective, tasks relating to both factual and hypothetical reasoning have been con-
sidered either separately or jointly [5, 26, 66]. The BDD-X dataset [66] enhances the popular BDD dataset consisting
of action descriptions, by adding explanations (e.g., the vehicle accelerated because the traffic light was green). This
dataset was reused once more to create BDD-QA [5], a causal reasoning QA dataset generated based on careful en-
gineering over the descriptions of actions and their explanations. BDD-QA can be seen as a decision-making dataset
for predicting the best course of action, where the actions can be grouped into seven categories: accelerate, merge,
drive, slow, stop, turn, and navigate. The QA set of TrafficQA [26] includes six different aspects of reasoning prob-
lems, five of which can be categorized as inference tasks: attribution, introspection, counterfactual inference, event
forecasting, and reverse reasoning. TV-QA [5] extended TrafficQA with detailed captions for complex actual and
hypothetical reasoning over traffic situations in the text on four tasks: reverse reasoning, forecasting, counterfactual
reasoning, and introspection. An example of the three datasets from this work is shown in Table 2. By leveraging
these datasets, we can make advancements in traffic monitoring for enhancing system reliability.

4. NeSy Methods for Traffic Understanding

We expect that NeSy reasoning methods can enable reliable technology for traffic understanding. Next, we review
prior methods that contribute to this goal along two complementary aspects: robustness and explainability.

4.1. NeSy for Robust Traffic Understanding

NeSy can leverage background symbolic knowledge in a neural architecture to glue together information from
various domains, modalities, and sources. By leveraging the wealth of information encapsulated in these knowledge
bases, it becomes possible to bridge the gap between diverse modalities such as text, images, audio, and video.
By using knowledge to enhance traffic understanding, the authors in [67] create and evaluate knowledge graph
embeddings for autonomous driving. [52] enhance the knowledge graph for scene entity prediction in autonomous
driving. ITSKG [68] is a knowledge graph framework for extracting actionable information from raw sensor data
in traffic. CoSI [69] is a knowledge graph-based approach for representing information sources relevant to traffic
situations. Such works focus on in-domain reasoning and rely on benchmark-specific training data.

Meanwhile, the robustness of methods can be tested through a zero-shot evaluation procedure. In [5], we used a
natural language formulation of traffic reasoning and experimented with equipping a language model with domain
knowledge from a QA benchmark [70], commonsense knowledge from a synthetically created QA set [71], and their
combination. The resulting model was evaluated on an unseen test set that evaluates causal inference, on which the
aggregated knowledge performed the best, the vanilla model was the worst, and commonsense knowledge was more
beneficial than domain knowledge. The contribution of various knowledge types was task-dependent: commonsense
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knowledge is most impactful for complex and hypothetical tasks, like introspection, whereas retrieving domain
knowledge is most effective for tasks that require contextual decision-making and understanding of traffic rules [5].

To illustrate the complementarity of these two knowledge types, let us consider the question what might be the
reason that a car is waiting in the intersection when the traffic light is green? Its answer The car is waiting for
pedestrians is well-supported by both kinds of knowledge: commonsense knowledge can tell language models
that cars will pass the crosswalk when driving and crosswalk will appear at the intersection, while traffic domain
knowledge tells the models that cars should yield to pedestrians passing the crosswalk [5].

These findings suggest that by incorporating richer knowledge into the modeling process, we can unlock new
opportunities for the development of intelligent systems capable of reasoning across different modalities and de-
livering more comprehensive and accurate results. Yet, we are only beginning to realize this potential. To this end,
HANS [1] provides a theoretical neuro-symbolic framework for integrating different modalities and knowledge
types into a single neural system, consisting of six general processes: generation, semantic representation, augmen-
tation, assessment, infusion, and inference. Yet, the combination of multiple modalities and knowledge types for
the traffic domain remains an open challenge. The idea of scene knowledge graphs (SKGs) [72] can intuitively be
used as a common representation, supported by traffic monitoring formalisms like the Scene Ontology [73] and the
Traffic Monitoring Knowledge Graph [1]. Following [72], distant supervision data can be extracted to transform
situations into such SKGs, and the SKGs into decisions or classification outputs. These are open-ended research
directions that require significant innovation both for the traffic domain and multimodal reasoning in general.

4.2. NeSy for Explainable Traffic Understanding

Commonsense knowledge bases provide a structured and organized representation of human knowledge. This
knowledge can be used to explain how and why certain decisions or actions are taken. For example, if a decision
is made by a machine learning model based on commonsense knowledge, it can be explained by referring to the
relevant facts, rules, and principles stored in the knowledge base. This makes it easier to understand the decision-
making process and to identify any biases or errors that may have occurred.

The integration of symbolic reasoning allows for the explicit representation of knowledge in the form of rules,
leading to an understandable explanation. In the context of autonomous driving, these rules are essential to abide by
the “rules of the road.” By incorporating symbolic representations into the reasoning process, neuro-symbolic sys-
tems can provide explanations that are grounded in human-understandable concepts. For example, if an autonomous
vehicle is unsure of what it is perceiving, instead of showing a saliency map [74] on possibly irrelevant parts of the
input image, we can construct an interpretable, natural language explanation showing that the vehicle was unsure
of what it perceived. These symbolic representations can be used to represent domain-specific knowledge, causal
relationships, and decision-making rules, making the reasoning process more transparent and interpretable.

By combining neural networks and symbolic reasoning, NeSy reasoning can bridge the gap between opaque deep
learning models and symbolic-level human understanding. This enables explanations that are more transparent, in-
terpretable, and dynamic. For example, consider our prior work on a multimodal monitoring system for autonomous
vehicles [75]. This system adds a set of domain specific rules and commonsense knowledge to explain the failures
between parts, e.g., when the vision system and sensor system disagree on what is being perceived. These explana-
tions also reflect (and explain) the inherent multimodal nature of autonomous systems and traffic. Neural networks
learn from complex, high-dimensional data, and symbolic reasoning, like diagnostics brings transparency and inter-
pretability. By integrating these two approaches, neuro-symbolic systems can leverage the strengths of each. This
also aligns with the need for explanations for accountability, so that we can diagnose and understand the errors in
complex systems.

5. Conclusions and Outlook

In this position paper, we examined NeSy representation and reasoning in the context of the traffic domain. We
decomposed the traffic domain into two views: first-person (autonomous vehicles) and third-person (traffic moni-
toring) and contributed a taxonomy for traffic domain tasks: safety, perception, and inference tasks. We provided
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examples of the tasks in both views and discussed the prior work on them. Throughout the paper, we show that
NeSy plays a pivotal role in creating robust and trustworthy traffic systems, creating a more reliable transportation
infrastructure for society as a whole. Specifically, we discussed prior work that combines neural and symbolic tech-
niques to improve two aspects of the methods: robustness and explainability. The analysis in this paper highlights
that the traffic domain covers a rich set of tasks, and relies on difficult, open-world research problems that we are
only starting to understand and address as a community.

Research on developing AI for the traffic domain has gradually been switching its attention to NeSy evaluation,
representation, and reasoning methods, in recognition of the requirements of affected users. We believe that reliable
intelligent agents for traffic need to satisfy the CARE (Controllable, Adaptive, Responsible, and Explainable) [13]
principles in order to make a positive impact on people and society as a whole. Yet, our paper shows that there is
significant space for improvement of the current AI technology for the traffic domain. While addressing the task
challenges from our taxonomy for the traffic domain is crucial, these efforts also open research directions in NeSy
in the traffic domain. Here, we list three key research directions, posed as requirements, to motivate reliable NeSy
reasoning for real-world traffic situations:

1. Representative evaluations for traffic systems need to be multimodal, interactive, and realistic. While there
are several autonomous driving challenges, including multimodal task challenges,6 there is a lack of neuro-
symbolic challenges with these properties. The more recent challenges in trajectory prediction are hybrid
tasks,7 which involve navigating through dynamic and unpredictable environments with a wide range of po-
tential interactions and uncertainties. Upgrading these tasks to more realistic settings that cover the entire
complexity of the safety, perception, and inference tasks is a notable future work goal. We expect that NeSy
will be a great asset on such tasks because it gives us the tools, e.g., rules, KBs, and reasoning to address the
complexities and uncertainties in real-world traffic applications.

2. Comprehensive knowledge for traffic AI models must contain a high-quality combination of ontological con-
cepts, rules, domain knowledge, and commonsense knowledge. Recent work has shown that such knowledge
types provide complementary insights [5]. We expect that comprehensive sources of knowledge or method-
ologies for combining knowledge on the fly in light of the context will be essential for AI that pertains to the
CARE principles and performs reliably. We expect that NeSy methods are uniquely positioned to contribute
to the development of such resources and their usage for downstream reasoning.

3. NeSy user-facing models must be robust, explainable, and controllable by humans in intuitive ways. Both
autonomous driving and traffic monitoring are sensitive tasks that require intelligent agents that not only
perform well, but also perform responsibly, can explain their predictions, and can interact with people over
time. This goal is at the forefront of NeSy AI for a variety of applications; however, the traffic domain is
especially attractive given its high stakes and profitability.

Embracing these principles can lead to advancements in applying intelligent agents in the traffic domain, enabling
safer, more efficient, and reliable traffic systems. For example, consider the third person’s view of stop lights or
traffic control systems. Traditional traffic lights follow a fixed schedule, leading to inefficiencies and congestion,
especially during peak hours or in response to unexpected events. Instead, let us consider an AI-powered traffic
light, with NeSy representation and reasoning. The control system can dynamically adapt signal timings based on
real-time traffic conditions, reducing congestion and improving the overall flow of vehicles. It is also explainable,
and it can signal the reason why the light is taking so long. This AI-enabled traffic light would also have an impact
beyond saving time and frustration. In cases of an emergency, the traffic light could quickly adjust lights to clear a
pathway for emergency vehicles, helping to lives. In conclusion, NeSy reasoning is imperative to safety in the traffic
domain; thus, we encourage the development of NeSy challenges and methods to reduce traffic accidents, reduce
congestion, save lives, and foster a culture of responsible driving.

6NuScenes challenges: https://www.nuscenes.org/object-detection?externalData=all&mapData=all&modalities=Any
7NuScenes Trajectory Prediction Challenge: https://www.nuscenes.org/prediction?externalData=all&mapData=all&modalities=Any

https://www.nuscenes.org/object-detection?externalData=all&mapData=all&modalities=Any
https://www.nuscenes.org/prediction?externalData=all&mapData=all&modalities=Any
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