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Abstract
Neural Language Models such as BERT or GPT operate on the basis of sequences of words. Pre-training on a large
corpus endows them with implicit knowledge about the relationship between words. This study explores the extent
to which the explicit incorporation of knowledge about syntactic relations, represented as a graph of dependencies,
can enhance Machine Translation (MT) tasks. Specifically, it employs the Graph Attention Network (GAT), trained on a
Universal Dependencies (UD) corpus, to evaluate the impact of explicit syntactic knowledge, even when derived from a
smaller corpus, in comparison to the pre-training of implicit knowledge on a massive corpus. The investigation involves
an experiment on integrating GAT-models into the MT framework, demonstrating robust improvement in MT quality for
three language pairs, thus opening up possibilities for neurosymbolic approaches to Natural Language Processing.
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Introduction

The Transformer architecture (Vaswani et al. 2017) has
proven to be an extremely effective method for pre-training
language models, from BERT (Devlin et al. 2019a) to
GPT (Brown et al. 2020). These models leverage the self-
attention mechanism for the masked language modeling task,
i.e., predicting the word masked in a context. However,
this relatively simple procedure leads to rich contextual
representations, which can rival human performance.
Nevertheless, despite their ability to learn implicit syntactic
patterns, these models often struggle with explicit syntactic
structures and phenomena (Rogers et al. 2020; Bai et al.
2021). This limitation is particularly significant in tasks
like Neural Machine Translation (NMT), where syntactic
accuracy is crucial for correctly interpreting and translating
the structure and meaning of the source text. On the other
hand, linguistic research has long focused on the detailed
description and annotation of syntactic relations across
languages. The Universal Dependencies (UD) (Nivre et al.
2016) provides a standardized framework for annotating
syntactic dependencies, creating richly annotated corpora
that can be leveraged to improve NMT systems. Integrating
explicit syntactic knowledge into NMT models has the
potential to enhance translation quality by providing more
structured and interpretable representations of language.

Neurosymbolic AI aims to bridge the gap between
symbolic reasoning and neural computation, thereby
enabling more transparent, interpretable, and robust AI
systems. Symbolic reasoning involves using explicit rules
and structures to represent and manipulate knowledge,
while neural networks excel at learning from large datasets
and capturing complex patterns (Tilwani et al. 2024;
Besold et al. 2021). Traditional sequential models, such
as Recurrent Neural Networks (RNNs) and Transformers,
although capable of processing and representing sentences,

often fail to accurately capture complex syntactic structures
and phenomena (Conneau et al. 2018; Egea Gómez et al.
2021; Peng et al. 2021). The advent of Graph Attention
Network (GAT) (Veličković et al. 2017) introduces a
more explicit representation of syntactic structures and
inter-word dependencies through their topology, promising
better readability and interpretability in Natural Language
Processing (NLP) (Huang et al. 2020; Li et al. 2022).

Inspired by these developments, this study introduces
NMT engines improved with Syntactic knowledge via Graph
attention and BERT (SGB), where GAT provides a powerful
mechanism for explicitly representing syntactic structures
and inter-word dependencies, complementing the implicit
knowledge captured by BERT. This approach aligns with the
principles of neurosymbolic AI, which seeks to combine the
strengths of symbolic reasoning (explicit syntactic graphs)
with the robustness and scalability of neural networks (BERT
and Transformer models). By integrating syntactic data
from source sentences with GATs and BERT, we aim to
improve Transformer-based NMT by incorporating syntax
(every sentence yields a syntactic tree structure through the
parser) and leveraging the capabilities of the pre-trained
BERT model. Utilizing multi-head attention mechanisms
within the graph structure allows for the explicit exploitation
of source-side syntactic dependencies, enhancing both the
BERT embeddings on the source side and the effectiveness
of the target-side decoder. The study conducts experiments
on translation tasks from Chinese, German, and Russian to
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English to demonstrate the effectiveness of the proposed
methodology, across three typologically different languages.
We also examines the interpretability of the proposed
NMT engines in improving translation quality, such as
better identification of certain syntactic structures in the
source language, and whether GAT can effectively learn
syntactic knowledge. This research fills the current gap
in understanding how syntactic strategies impact Machine
Translation (MT) quality. The main contributions of this
study are summarized as follows:

The proposed SGB engines effectively demonstrate
the potential and effectiveness of integrating BERT
with syntactic knowledge derived from graph attention
mechanisms in MT tasks. These engines can be efficiently
fine-tuned to complete the training process without the
need for pre-training from scratch. This study evaluates
the translation quality of the proposed MT engines,
focusing specifically on improvements in Quality Estimation
(QE) scores. The results indicate that the SGB engines
achieve enhanced QE scores across three MT directions.
A paired t-test confirms a statistically significant difference
in translation quality, highlighting the engines’ superior
performance. Additionally, the study identifies specific
syntactic structures in source sentences that the SGB engines
learn optimally from, which contributes to the overall
improvement in translation quality.

This study reveals that while GAT possesses the capability
to learn syntactic knowledge, their sensitivity in the learning
process is influenced by the multi-head attention mechanism
and the number of model layers. Excessive model layers
can even significantly impair the GAT’s ability to learn
dependency relations. Furthermore, there is a correlation
between the GAT’s mastery of syntactic dependencies and
translation quality. Better-learned syntactic structures by the
GAT enable the MT engine to more accurately recognize
source language sentences with those structures, resulting in
smoother and more accurate translations.

This study also investigates the interpretability of
translation quality improvement through the lens of
syntactic knowledge. The experiments demonstrate that a
syntactic structure based on GAT enables more nuanced
modeling of source language sentences by the lower
and middle layers within BERT, thereby enhancing
translation quality. While SGB engines enhanced with graph-
based syntactic knowledge exhibit improved QE score
distributions, the integration of BERT plays a crucial role in
forming representations of source sentences. This research
underscores the importance of accurate syntactic graphs
for maintaining high-quality translations and highlights
the limitations of current models in interpreting jumbled
sentences. Furthermore, this study assesses the versatility
of the proposed approach by integrating XLM-Roberta in
place of BERT. Despite this substitution, the approach
consistently improve translation quality across all evaluated
MT directions, underscoring its broad applicability.

Related Studies

Pre-trained Language Models
Pre-trained models have significantly advanced NLP,
particularly with the advent of Transformer architectures,

marking a paradigm shift in the field’s approach to
understanding language (Devlin et al. 2019b; Liu et al.
2019). Among these innovations, BERT stands out by
leveraging self-supervised learning on extensive corpora
through the Masked Language Model (MLM) and Next
Sentence Prediction (NSP) tasks. These techniques enable
BERT to capture the essence of linguistic knowledge,
enriching its understanding of language context and structure
(Rogers et al. 2020). The empirical analysis and applications
of BERT have also helped humans understand pre-
trained language models, supporting future improvements.
Also, BERT has made significant contributions to MT
tasks, where its contextual word embeddings and generic
linguistic knowledge learned from pre-training enhance
the generalization ability of MT engines, especially in
cases with limited bilingual data. Most studies show that
incorporating BERT improves the performance of MT
engines, as demonstrated by metrics such as the BLEU score
(Imamura and Sumita 2019; Yang et al. 2020; Zhu et al.
2020).

Syntactic Knowledge in Translation
In the realm of MT, the importance of syntactic dependency
cannot be overstated. Syntactic dependency is crucial for
the grammatical dissection of sentences, presenting them
in easily interpretable tree diagrams. The incorporation
of syntactic data into Neural Machine Translation (NMT)
systems provides substantial benefits, notably in clarifying
sentence structure, facilitating more accurate context
interpretation, and minimizing ambiguity. In recent years, the
Transformer model has garnered significant attention, and
the strategy for incorporating explicit syntactic knowledge
has shifted progressively from Recurrent Neural Network
(RNN)-based methods to Transformer-based ones (Currey
and Heafield 2019; Zhang et al. 2020; McDonald and Chiang
2021). Within the Transformer framework, a prevalent
approach involves leveraging the self-attention mechanism
to capture and represent syntactic information, enabling
focused analysis on particular tokens. However, the efficacy
of using the Transformer’s attention mechanism as an
explanatory tool remains a topic of debate (Jain and Wallace
2019; Wiegreffe and Pinter 2019). Efforts have been made
to enhance the effectiveness of downstream tasks by fusing
explicit syntactic knowledge with BERT (Wang et al. 2020;
Huang et al. 2020). However, the applications of such
integration in MT have not been thoroughly explored.

Deep Learning for Graphs
In NLP tasks, representing sentences and words as linear
sequences might compress or obscure crucial topological
information, including tree-like syntactic structures. This
loss of structure can present significant challenges for
downstream tasks that depend on accurately capturing
the nuanced features of source language sentences, such
as speech recognition and MT. While there are many
approaches for encoding graphs (Chen et al. 2025), Graph
Neural Networks (GNNs) offer a solution through a
topological graph-based approach, enabling the construction
of diverse linguistic graphs. These graphs transform various
textual features into a network of nodes, edges, and overall
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graph structures. This method allows for a more nuanced
analysis and inference of linguistic patterns within input
sentences, significantly benefiting downstream tasks (Song
et al. 2019; Yin. et al. 2020). The GAT emerges as a
novel solution within this space, adept at processing data
in non-Euclidean domains. It utilizes attention mechanisms
to dynamically assign importance to nodes, enhancing the
model’s capacity to learn from graph-based representations.
This capability, when combined with BERT, forms a
robust framework for encapsulating linguistic knowledge in
downstream NLP tasks (Huang et al. 2020; Chen et al. 2021;
Zhou et al. 2022).

Methodology

Construction of the Proposed Engines
This section provides detailed descriptions of the individual
layers within the engine. Figure 1 illustrates the comprehen-
sive architecture of the proposed engines.

Encoding Given source sentence S = [w1, w2, w3, . . . wi],
where i is the number of word tokens in a sentence, S is then
cut into subword tokens and fed into BERT, which become:
S̃ = [[CLS], w1

1, w
1#1
1 , w2, w

3
3, w

3#3
3 , . . . wn, [SEP ]],

Where wn#n represents the subwords of wn, [CLS] and
[SEP] are special tokens of BERT.

The experiments include translations from three source
languages into English: Chinese to English (Zh→En),
Russian to English (Ru→En), and German to English
(De→En). We use three BERT variants as an encoder
for each MT engine, where Chinese is chinese-bert-wwm-
ext1, Russian is rubert-base2, and German is bert-base-
german3. Although their model structures are the same, the
approaches differ in pre-training. Chinese BERT uses Whole
Word Masking, Russian BERT takes the multilingual version
of BERT-base as its initialization for further pre-training,
and the approach of German BERT remains the same as
vanilla BERT. We aim to propose approaches that can be
generalized to the BERT model structure, even their pre-
training approaches are different.

By capturing the representation of each subword token
through BERT, the final embedded sequence is accessible
via the last layer of BERT, hB = BERT (S̃). To obtain the
syntactic dependency information of the source sentence S,
we use a Universal Dependencies-based parser4 (He and
Choi 2021) to perform tokenizing and syntactic dependency
parsing on source sentences, as shown in Table 1. After
obtaining the parsing results, we aim to represent the
syntactic connections between words in the sentence using
a graph. We construct the node adjacency matrix for graph
representation, where each token corresponds to a node in the
graph as shown in Figure 2. Since word representations from
BERT contain rich semantic information, nodes on the graph
are encoded by BERT embeddings. Considering the subword
segmentation, we average subword token representations to
obtain the node embeddings on the graph.

Graph Attention Words and adjacency relations in a
sentence can be represented as a graph structure, where the
words (known as tokens in the model) on the graph are as
nodes, and the relationships called syntactic dependencies
between words are regarded as edges connecting nodes.

Table 1. To illustrate the working principle, consider the input
sentence: ”The new spending is fueled by Clinton’s large bank
account.”. This sentence is subsequently parsed to provide
detailed linguistic information, such as part-of-speech (POS)
tags, head node IDs, and syntactic dependency labels
(DepRel). Source language sentences in Chinese, Russian,
and German also follow the same parsing steps.

index Word POS Head DepRel
1 The DET 3 det
2 new ADJ 3 amod
3 spending NOUN 5 nsubj:pass
4 is AUX 5 aux:pass
5 fueled VERB 0 root
6 by ADP 11 case
7 Clinton PROPN 11 nmod:poss
8 ’s PART 7 case
9 large ADJ 11 amod

10 bank NOUN 11 compound
11 account NOUN 5 obl:agent
12 . PUNCT 5 punct

We use GAT (Veličković et al. 2017) as our critical
component to fuse the graph-structured information and
node features. The node features given to a GAT layer are
G̃ = [x1, x2, . . . xi, . . . xn], xi ∈ RF , where n is the total
number of nodes, F is the feature size of each node, the same
with BERT embedding. The Equation (1) and (2) summarise
the working mechanism of the GAT.

hout
i =

K

∥
k=1

σ

∑
j∈Ni

αk
ijW

kxj

 (1)

αk
ij =

exp(LeakyReLU(aT [Wxi ∥ Wxj ]))∑
v∈Ni

exp(LeakyReLU(aT [Wxi ∥ Wxv]))
(2)

1-hop neighbors j ∈ Ni are attended by the node i,
K

∥
k=1

represents K multi-head attention output concatenation.

hout
i is the representation of node i at the given

layer. αk
ij means attention between node i and j. W k

is linear transformation, a is the weight vector for
attention computation, LeakyReLU is activation function.
Simplistically, the feature calculation of one-layer GAT
can be concluded as hG = GAT (X,A; Θl). The input is
X ∈ Rn×F , and the final output is hG ∈ Rn×F ′

where n
is the number of nodes, F is the feature size for each
node, F ′ is the hidden state for GAT, A ∈ Rn×n is the
graph adjacency matrix indicating node connection, Θl is
the parameters during training. During training, the GAT
faithfully represents the syntactic information provided by
the parser in the adjacency matrix. It then obtains the
representations of the vertices and passes them to subsequent
model modules. However, we cannot guarantee that all
information from the parser is correct. Therefore, we treat

1https://huggingface.co/hfl/chinese-bert-wwm-ext
2https://huggingface.co/DeepPavlov/
rubert-base-cased
3https://huggingface.co/bert-base-german-cased
4https://github.com/hankcs/HanLP
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Figure 1. The architecture of the SGB engines. The encoder with BERT and GAT on the left and the decoder on the right. Dash
lines indicate the alternative connections. Hl

e and hl
g represent the final layer output of BERT and GAT.

Figure 2. The input sentence is parsed, and it is then expected
to be converted into a graph structure based on the connections
between parent nodes in the syntactic dependencies.

incorrect information as noise, allowing the model to learn
and enhance its robustness against such noise.

Fusion and Output Two methodologies for integrating
syntactic knowledge into machine translation (MT) engines
are introduced. The initial approach, termed Syntactic
Knowledge via Graph Attention with BERT Concatenation
(SGBC), involves merging syntactic information from
graphs with BERT for the encoder’s operation, as detailed
in Equations (3) and (4).

H l
e = concat(hB , hG) (3)

h̃l
d = attnD(hl

d, H
l
e, H

l
e) (4)

where attnD stands for encoder-decoder attention in MT
engines. l is the output of the l-th layer, d is the representation
of the tokens in decoder-side. H l

e contains the features of
BERT (hB) and GAT (hG) fed into the encoder-decoder
attention module in the decoder. The feed-forward network
subsequently processes the attention features alone with
residual connection, as in the case of the vanilla Transformer
model.

The second one, called Syntactic knowledge via Graph
attention with BERT and Decoder (SGBD), is that the
syntactic knowledge on the graph is not only applied to
the encoder but also guides the decoder through the syntax-
decoder attention, as shown in Equations (5), (6) and (7).

h̃l
d = attnD(hl

d, H
l
e, H

l
e) (5)

h̃l
s = attnS(h

l
d, h

l
g, h

l
g) (6)

h̃l
t = concat(h̃l

d, h̃
l
s) (7)

where attnD and attnS represent encoder-decoder
attention and syntax-decoder attention respectively. hl

g is
the output of GAT containing syntactic dependency features
of sentences via another feed-forward network. h̃l

t is the
final attention features obtained by concatenating attnD

and attnS . As with the vanilla Transformer, the predicted
word is generated by a feed-forward network with residual
connection and softmax function.

Metrics for Machine Translation Evaluation
In the domain of MT, there is an active search for accurate
and reliable evaluation metrics. Among these metrics,
BLEU (Papineni et al. 2001) has become a fundamental
tool for evaluating the quality of text translated from
one language to another. BLEU functions by comparing
machine-generated translations to one or more reference
translations, primarily focusing on the precision of n-grams.
Despite its widespread use, BLEU’s sole emphasis on precise
matching the reference translations, without considering
fluency or content adequacy, has led researchers to seek
supplementary evaluation strategies.

QE offers an innovative approach to translation assess-
ment that does not require reference texts, by building mod-
els that directly predict whether the suggested translation is
an accurate and fluent translation of the source text. This
method is not only innovative but also practical, especially
in contexts where reference translations are unavailable. QE
engines can be trained to evaluate various aspects including
fluency, adequacy, and even the predicted post-editing effort,
providing a comprehensive view of translation quality.

In this study, the evaluation of MT primarily employs
two methods: the widely recognized n-gram matching
model, BLEU, and advanced neural network-based QE
models, specifically COMET QE (Rei et al. 2020) and
TransQuest QE (Ranasinghe et al. 2020). However, both
BLEU and COMET QE operate at the corpus level, failing
to identify improvements in specific sentences and relying
on reference translations, which can overlook legitimate
translation variants. In contrast, TransQuest QE employs
MT quality assessment techniques to measure sentence-level
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improvements without relying on reference translations.
Additionally, TransQuest QE leverages state-of-the-art
transformer models, introducing a novel quality assessment
method through sentence-level quality estimation. It predicts
a quality score for each sentence pair (source and translated
sentence), which correlates with human judgments on
translation quality. This approach represents significant
advancements over traditional QE methods, providing more
accurate and reliable assessments. TransQuest is also the
winner of the WMT 20 QE shared task. Therefore, in the
subsequent experiments, the QE scores are derived from the
TransQuest QE methodology unless otherwise specified.

Datasets
The Parallel Universal Dependencies (PUD) corpus is a
collection of multilingual datasets designed to facilitate
cross-linguistic analysis and the development of MT engines.
Comprising texts translated into 20 languages, each dataset
within the PUD corpus contains 1,000 sentences that are
syntactically annotated, ensuring a high level of linguistic
consistency and quality across different languages. These
sentences are selected from a wide range of sources,
including news articles and Wikipedia, providing a diverse
mix of genres and topics.

The experiments utilize three typologically different
languages to be translated into English: PUD Chinese5, PUD
Russian6, and PUD German7. The choice of these languages
is determined by the availability of the UD corpus for a
trained external syntactic parser and the PUD corpus for
evaluating both the syntactic knowledge of BERT and GAT
and the performance of the MT engine.

What Happens to Translations

Translation Performance with BLEU and Quality
Estimation
The effectiveness of the proposed approach is evaluated
by BLEU score on the UNPC8 (Zh→En, Ru→En) and
Europarl9 (De→En) datasets. 1 million (M) sentence pairs
are selected as the training set for each language, with
6,000 and 5,000 sentence pairs for the validation and test
sets, respectively. The dataset is randomly divided to ensure
that each subset is representative of the overall distribution,
thereby reducing bias and ensuring a fair evaluation of the
model’s performance. The validation set is used to monitor
the model’s performance during training and to implement
early stopping to prevent overfitting, while the test set is
used for final evaluation to assess the model’s generalization
capabilities. The baseline involves an encoder based on
fine-tuned BERT, compared fairly with the proposed SGB
engines using the same training setup. Decoders from the
vanilla Transformer model are used, featuring BERT variants
for each source language with 6 layers and 8 attention heads,
while maintaining consistency in other parameters. The GAT
within SGB engines includes 2 layers and 6 attention heads
for Zh, and 4 attention heads for Ru and De, optimizing
model performance. Training utilizes the Adam optimizer
with parameters β1 = 0.9 and β2 = 0.98, a learning rate of
2e-5, word embedding of 768, and cross entropy as the loss

Table 2. The performance of SGB engines compared to
baseline engines in BLEU scores across three MT directions
with varying training set sizes. Despite the reduced dataset
Size, SGB engines maintain competitive BLEU scores.

Language Training Size Baseline SGBC SGBD

Zh→En
0.1M 24.26 24.89 24.72
0.5M 38.48 38.71 38.53
1M 47.15 47.23 47.17

Ru→En
0.1M 21.12 21.45 21.33
0.5M 37.69 37.74 37.68
1M 47.22 47.36 47.27

De→En
0.1M 15.41 15.79 15.50
0.5M 26.89 27.13 26.92
1M 37.59 37.67 37.63

function. All experiments are performed on RTX 3080 and
3090 GPUs.

As shown in Table 2, the proposed two engines achieve
higher BLEU scores than the baseline engines across all
three translation directions, regardless of the changes in the
training set size. This demonstrates the effectiveness and
generalization capability of the proposed approach. SGBC
consistently outperforms both the baseline and SGBD. This
can be attributed to the fact that the output of SGBC
more closely aligns with the criteria used in the BLEU
score calculation. It is likely to generate translations that
have a higher degree of n-gram overlap with the reference
translations, thus achieving higher BLEU scores. In contrast,
the more complex SGBD produces translations that are more
varied or nuanced, which may not always align as closely
with the reference translations in terms of n-gram precision.
Inspired by the study revealing BLEU reliability (Kocmi
et al. 2021), BLEU scores may not be sufficient to capture the
nuanced quality of translations. Therefore, two QE models,
COMET and TransQuest, are introduced to further evaluate
the translation quality of the proposed models. The key
difference between these models is that COMET assesses the
translation quality by examining the interplay between the
source sentence, its translation, and reference translations,
whereas TransQuest only requires the source sentence and
its translation. All performance metrics are scored on a scale
from 0 to 100, with higher scores indicating better translation
quality.

Table 3 demonstrates that when the training set size
reaches 1 million, both SGB series engines exhibit higher
scores on the BLEU and COMET QE performance metrics.
However, SGBC and SGBD exhibit notable differences in
their performance across these metrics: SGBC achieves the
highest BLEU scores in all three translation directions,
while SGBD obtains the highest COMET and TransQuest
QE scores. SGBD’s scores are generally at least 2 points
higher than those of the baseline engines. These performance
metrics reflect the engines’ proficiency in leveraging

5https://github.com/UniversalDependencies/UD_
Chinese-PUD
6https://github.com/UniversalDependencies/UD_
Russian-PUD
7https://github.com/UniversalDependencies/UD_
German-PUD
8https://opus.nlpl.eu/UNPC.php
9https://opus.nlpl.eu/Europarl.php
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Table 3. Performance comparison of BLEU, COMET, and TransQuest scores for three translation directions (Zh→En, Ru→En,
De→En) with a training set size of 1 million. The table shows the scores for the Baseline, SGBC, and SGBD models, highlighting
the best performance in each metric with bold text.

Training Size Language Zh→En Ru→En De→En
Metric Baseline SGBC SGBD Baseline SGBC SGBD Baseline SGBC SGBD

1M
BLEU 47.15 47.23 47.17 47.22 47.36 47.27 37.59 37.67 37.63
COMET 82.20 83.69 84.78 80.93 81.34 82.56 78.02 78.66 79.37
TransQuest 70.08 72.66 73.01 81.65 83.31 83.95 75.49 77.00 77.94

syntactic knowledge from graphs and fully utilizing BERT’s
potential language capabilities, enabling them to generate
more accurate translations. It is important to note that BLEU
is a paired metric, which can be unreliable, and both BLEU
and COMET QE depend on reference translations. In real-
world translation scenarios, reference translations may not
always be available, and the semantic diversity of output
sentences cannot be reliably verified. Therefore, compared
to BLEU and COMET QE scores, the TransQuest QE score
offers a more nuanced advantage in adapting to reasonable
variations in translation. This is because it does not require
reference translations, making it a more robust and practical
metric for evaluating translation quality in diverse and
realistic settings.

Translation of In-domain and Out-of-domain
Sentences
Based on the results of the above experiments, BLEU
scores still fail to reflect linguistic subtleties and align
with human evaluative criteria (Callison-Burch et al. 2006;
Novikova et al. 2017). To address these shortcomings, we
employ a gold-standard syntactically annotated corpus, the
PUD corpus, and the TransQuest QE model to further
investigate changes in translation quality. The PUD corpus,
with its diverse range of sources, including out-of-domain
content, ensures a comprehensive evaluation of the MT
engines’ ability to handle various linguistic structures and
contexts. Additionally, the syntactic annotations in the PUD
corpus provide a gold-standard reference, allowing for a
detailed analysis of the engines’ performance in capturing
and translating syntactic dependencies. We utilize the PUD
corpus (PUD Chinese, PUD Russian, and PUD German)
to evaluate the translation quality of the Baseline and SGB
engines across three translation directions. The PUD corpus
includes sentences from various out-of-domain sources, not
limited to news and Wikipedia content, thus placing higher
demands on the MT engines’ ability to effectively summarize
and clarify the structure of input sentences. The QE model is
used to estimate the quality of the source language sentences
and their translations, rating the translations on a scale from
0 to 1, where higher scores indicate better translation quality.
Paired t-tests are used to analyze the changes and distribution
of translation quality before and after implementing the
proposed strategies, with a significance level of 0.05.

From Table 4, when comparing the Zh Baseline and
SGBC engines, average of differences (x̄d) of them is 0.024,
standard deviation of the difference (Sd) is 0.109 and the
test statistic (t) is 7.18, corresponding to a p-value < 0.001.
Similarly, the t and p-values for the SGBD engine also
reveal the statistical significance of the QE scores before and
after the proposed approach. Both comparisons reject the

null hypothesis H0 at the significance level of 0.05, where
H0 states that the proposed approaches do not significantly
differ in QE scores compared to the baselines. Instead,
the alternative hypothesis H1 is accepted, which states that
the differences between the baseline and SGB engines in
QE scores are large enough to be statistically significant.
Specifically, H1 asserts that the QE scores of the SGB
engines are significantly higher than those of the baseline
engines.

Comparable outcomes are evident for Ru and De, wherein
the quality of translations, upon the implementation of
proposed methodologies, manifests a significant divergence
from the prior state, as gauged by QE scores. The incor-
poration of syntactic knowledge via graph representations
alongside the employment of BERT substantially enhances
the translation efficacy of MT engines. It is noteworthy that
the SGBD engines consistently achieve elevated QE scores,
indicating a robust improvement in translation quality. Con-
trarily, while the SGBC engines are favored by BLEU scores,
achieving higher metrics under that evaluation, the QE scores
highlight a different aspect of translation quality, underscor-
ing the nuanced and comprehensive analysis provided by
QE metrics over BLEU. This divergence underscores the
complexity of translation quality evaluation, revealing how
different evaluation metrics may prioritize various aspects of
translation performance.

Identifying Syntactic Relations in Source
Language Sentences
Multiple dependency relations signify the structural
attributes of a given sentence. To identify which dependency
relation in the source language sentence from the PUD
corpus contributes most to the enhancement of translation
quality through translation engines, we retain and categorize
sentences based on their dependency relations. Specifically,
both the baseline engine and the two proposed SGB engines
translate their own source language sentences from the PUD
corpus. The translations are then ranked according to their
TransQuest QE scores. The bottom 30% of translations,
based on TransQuest QE scores, are considered low-quality
translations. Source language sentences corresponding to
these low-quality translations and containing the same
dependency relation are grouped together. For example, for
a given dependency relation d, any source language sentence
with a low-quality translation containing such dependency
d is grouped together. The average TransQuest QE score
for each group, characterized by specific dependency
relations, is calculated both before and after the application
of the proposed methodologies. This approach allows us
to conduct a detailed examination of the impact of distinct
syntactic structures on the efficacy of translation quality
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Table 4. The baseline and the SGB engines compare the translations of the PUD corpus, scored by the QE model and subjected
to paired t-tests to demonstrate the differences in translation quality scores.

Source Language Sample Size Models x̄d Sd t P-value

Zh 1000 Baseline SGBC 0.024 0.109 7.18 p < 0.001
SGBD 0.032 0.111 9.12 p < 0.001

Ru 1000 Baseline SGBC 0.024 0.042 18.38 p < 0.001
SGBD 0.034 0.045 23.67 p < 0.001

De 1000 Baseline SGBC 0.007 0.113 2.16 p = 0.030
SGBD 0.012 0.110 3.61 p < 0.001

improvements facilitated by the engines. By analyzing these
groups, we can determine which dependency relations are
most influential in improving translation quality, thereby
providing insights into the syntactic features that benefit
most from the proposed improvements.

Table 5 details how SGB engines outperform the baseline
engines in accurately identifying syntactic relations within
source language sentences, thereby markedly improving
translation quality. It particularly emphasizes the top five
syntactic relations that contribute to this improvement.
Although both SGBC and SGBD engines incorporate graph-
based syntactic knowledge, their approaches to learning
dependency relations diverge. For instance, the ”flat” (flat
structure) in Zh is markedly significant in the SGBC
engine yet receives less emphasis in the SGBD engine.
Despite SGBD’s decoders being similarly guided by
syntactic knowledge derived from graph representations,
it does not uniformly excel across all syntactic relations
in achieving a higher QE score compared to the SGBC
engine. Specifically, in languages such as Zh, Ru, and De,
the SGBC model outperforms SGBD in handling certain
syntactic relations, including ”discourse:sp” (discourse
marker: speech), ”orphan” (orphan), and ”csubj” (clausal
subject). This discrepancy may suggest that an overly
focused reliance on syntactic knowledge could lead to
knowledge redundancy, detrimentally affecting translation
quality in the SGBD engine. Conversely, the importance
of some syntactic relations remains consistent across both
SGBC and SGBD engines, underscoring that the integration
of syntactic knowledge via graph attention alongside
BERT enables the MT engine to more precisely address
specific common relations. This consistency, irrespective of
the methodological differences between the two engines,
indicates that leveraging graph-based syntactic knowledge
in conjunction with BERT enhances the MT engine’s
ability to explicitly navigate certain syntactic structures, thus
contributing to the refinement of translation quality.

What Happens to Graphs

Syntactic Knowledge in GAT
Graph Attention Networks (GATs) have the capability to
represent syntactic structures in sentences using graph-
based models. However, whether this capability signifies
their ability to effectively learn syntactic knowledge remains
an open question. To address this, we design a syntactic
dependency prediction experiment where GATs are tasked
with predicting the relevant syntactic labels in the syntactic
structure. For this experiment, we utilize the PUD corpus,

which provides gold-standard syntactic annotations, as our
foundational dataset. The experimental process involves
converting the syntactic annotations and sentence words
into syntactic trees, which are subsequently transformed
into graph structures for GAT analysis. In these graph
structures, each word is represented as a node, and the
edges represent the syntactic dependency connections as
defined by the PUD corpus. The primary objective of the
GAT is to infer the dependency relations for each word
by integrating information from both nodes and edges.
Unlike traditional syntactic dependency models, which often
follow a unidirectional flow from parent to child nodes,
this approach treats dependencies as bidirectional graphs.
This bidirectional model acknowledges the mutual influence
between parent and child nodes, which is crucial for GATs
to understand the varying implications of node connections.
By considering these bidirectional relationships, GATs can
enhance their ability to accurately identify dependency
relations among nodes, thereby improving their syntactic
learning capabilities.

Similar to the Transformer model, GAT utilizes multi-
head attention and layers stacked upon each other. The
study initially explores how the number of multi-head
attention heads and layers influences GATs’ acquisition
of syntactic knowledge, examining the advantages these
configurations offer for learning syntactic dependencies. In
the experiments, the attention head counts (Heads) tested
for GATs are 2, 4, 6, and 8, while the layer counts (L)
explored are 2, 3, 4, 5, and 6. For each language, datasets are
divided into training, validation, and test sets with 800, 100,
and 100 sentences, respectively, to tune hyperparameters,
monitor model performance during training to prevent
overfitting, and evaluate the model on unseen data. The
model parameters are set with a learning rate of 2e-5, a
dropout rate of 0.2, Adam as the optimizer, and a hidden size
of 768. The F1-score is used as the evaluation metric.

Table 6 emphasizes the critical importance of judiciously
configuring the number of attention heads and layers in GAT,
as this configuration significantly influences the model’s
sensitivity to accurately learn syntactic knowledge. For
example, the Russian language experiment reveals that a
GAT setup with 2 layers and 4 attention heads outperforms
a configuration with 8 attention heads in terms of overall
prediction efficacy. As the model is expanded to 4 layers,
a higher number of attention heads enhances performance,
with the F1-score increasing from 0.44 to 0.57. Conversely,
increasing the number of layers tends to degrade the
model’s ability to accurately predict dependency relations.
Specifically, a configuration with 2 layers outperforms one
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Table 5. The top-5 dependency relations identified by the SGB engines are those that show the greatest improvement in QE
scores. These relations highlight which syntactic dependencies are most effectively detected and contribute most significantly to the
enhancement of translation quality in each translation direction. ”Qual” denotes the percentage increase in QE scores for sentences
containing such a syntactic structure.

Zh

Baseline SGBC Qual Baseline SGBD Qual

obl:agent 0.379 0.576 +51.978% obl:agent 0.379 0.597 +57.519%
discourse:sp 0.388 0.502 +29.381% iobj 0.387 0.511 +32.041%
flat 0.387 0.494 +27.648% nsubj:pass 0.423 0.545 +28.841%
flat:name 0.415 0.518 +24.819% appos 0.404 0.518 +28.217%
mark:prt 0.435 0.532 +22.298% discourse:sp 0.388 0.501 +29.123%

Ru

Baseline SGBC Qual Baseline SGBD Qual

orphan 0.608 0.768 +26.315% orphan 0.608 0.719 +18.256%
aux 0.700 0.764 +9.142% aux 0.700 0.777 +11.000%
ccomp 0.681 0.745 +9.397% ccomp 0.681 0.747 +9.691%
flat:name 0.703 0.761 +8.250% discourse 0.614 0.676 +10.097%
fixed 0.688 0.742 +7.848% fixed 0.688 0.750 +9.011%

De

Baseline SGBC Qual Baseline SGBD Qual

csubj 0.449 0.566 +26.057% flat 0.442 0.625 +41.402%
flat 0.442 0.553 +25.113% csubj 0.449 0.554 +23.385%
expl 0.486 0.573 +17.901% expl 0.486 0.589 +21.193%
compound:prt 0.493 0.579 +17.444% compound:prt 0.493 0.595 +20.689%
compound 0.495 0.577 +16.565% cop 0.502 0.586 +16.733%

Table 6. GAT performance in syntactic dependency prediction
for three languages with different numbers of attention heads
and layers. The number of attention heads increases
incrementally from 2 to 6, and the number of model layers
increases from 2 to 8.

Layers Zh

2 Heads 4 Heads 6 Heads 8 Heads

2 0.63 0.62 0.64 0.64
3 0.64 0.61 0.62 0.63
4 0.56 0.58 0.64 0.49
5 0.49 0.50 0.51 0.50
6 0.37 0.40 0.33 0.33

Layers Ru

2 Heads 4 Heads 6 Heads 8 Heads

2 0.58 0.61 0.47 0.56
3 0.45 0.55 0.54 0.53
4 0.44 0.47 0.56 0.57
5 0.42 0.52 0.46 0.49
6 0.41 0.36 0.31 0.33

Layers De

2 Heads 4 Heads 6 Heads 8 Heads

2 0.64 0.67 0.64 0.56
3 0.60 0.56 0.56 0.57
4 0.56 0.50 0.53 0.53
5 0.58 0.61 0.50 0.47
6 0.48 0.49 0.48 0.42

with 6 layers, regardless of the number of attention heads.
This decline suggests that an increase in GAT layers might
lead to performance degradation, potentially due to nodes
losing their specific attributes or incorporating irrelevant
information during the aggregation process.

When examining the prediction scores for individual
dependency relations across the three languages, the results
further validate this observation. As shown in Table 7, when
the number of layers exceeds 3, the F1-scores for some
syntactic relations tend to decrease and even drop to 0
as the number of layers increases. Increasing the number
of attention heads does little to mitigate this degradation.
However, certain syntactic tags remain unaffected by this
trend. Regardless of the number of layers, GAT consistently
learns and maintains high F1-scores for tags such as
”advmod” (adverbial modifier), ”case” (case marking),
”cc” (coordinating conjunction), ”mark” (marker), ”nsubj”
(nominal subject) and ”punct” (punctuation). This indicates
that GAT exhibits a high sensitivity and reliable capture of
these specific syntactic features.

We continue to compare the F1 scores of GAT’s
dependency relation predictions with the QE scores of the
SGB engines when processing prior low-quality translations
containing these specific dependency relations (from Sec ),
as shown in Table 8. It highlights the top-10 dependency
relations with the highest prediction scores by GAT
across various source language sentences, along with the
corresponding changes in translation quality facilitated by
different MT engines. The results demonstrate a clear
positive correlation between GAT’s syntactic dependency
prediction scores and the improvement in translation quality,
especially when using the SGBC and SGBD engines. For
Zh, dependency relations such as ”mark” (marker), ”cc”
(coordinating conjunction), and ”conj” (conjunct) have very
high prediction scores by GAT (0.986, 0.984, and 0.970,
respectively). These high scores correlate with significant
improvements in translation quality, as evidenced by the
higher QE scores of the SGBC and SGBD models compared
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Table 7. The prediction of syntactic dependencies for three languages is conducted using different numbers of attention heads and
layers. As the number of layers increases, the performance of the GAT in predicting dependency labels declines, and it gradually
loses the ability to learn certain dependency labels, resulting in the F1 scores dropping to zero. However, some dependency
relations remain unaffected and continue to achieve relatively high prediction scores.

GAT Zh Ru De

Layers Heads advmod clf dep case flat mark acl:relcl cc nsubj

2

2 0.90 0.87 0.64 0.99 0.85 0.97 0.71 0.97 0.75
4 0.90 0.82 0.63 0.99 0.86 0.94 0.75 0.99 0.72
6 0.91 0.89 0.66 0.98 0.87 0.96 0.75 0.96 0.72
8 0.90 0.83 0.62 0.98 0.86 0.90 0.41 0.97 0.69

3

2 0.90 0.88 0.64 0.98 0.00 0.93 0.60 0.96 0.78
4 0.91 0.86 0.64 0.98 0.86 0.94 0.45 0.96 0.71
6 0.90 0.88 0.66 0.98 0.77 0.93 0.41 0.96 0.72
8 0.91 0.90 0.66 0.99 0.86 0.93 0.46 0.96 0.74

4

2 0.89 0.68 0.64 0.97 0.00 0.94 0.52 0.84 0.74
4 0.90 0.66 0.65 0.99 0.77 0.94 0.45 0.85 0.73
6 0.91 0.69 0.68 0.99 0.67 0.97 0.40 0.85 0.77
8 0.90 0.00 0.64 0.99 0.80 0.94 0.45 0.96 0.74

5

2 0.90 0.00 0.00 0.97 0.55 0.93 0.42 0.85 0.78
4 0.90 0.00 0.00 0.98 0.77 0.96 0.68 0.82 0.79
6 0.90 0.00 0.00 0.97 0.67 0.93 0.44 0.81 0.72
8 0.89 0.00 0.00 0.99 0.48 0.96 0.43 0.86 0.73

6

2 0.83 0.00 0.00 0.94 0.00 0.91 0.00 0.83 0.65
4 0.86 0.00 0.00 0.95 0.00 0.97 0.00 0.78 0.65
6 0.84 0.00 0.00 0.94 0.00 0.93 0.00 0.79 0.67
8 0.86 0.00 0.00 0.96 0.00 0.93 0.37 0.85 0.63

to the baseline. Similarly, for Ru, dependency relations like
”det” (determiner), ”root” (root), and ”amod” (adjectival
modifier) have high prediction scores (0.990, 0.987, and
0.982, respectively), leading to notable improvements in
translation quality. For De, dependency relations such as
”case” (case marking), ”cc” (coordinating conjunction),
and ”det” (determiner) also exhibit high prediction scores
(0.992, 0.987, and 0.987, respectively), resulting in improved
translation quality. The positive correlation between GAT’s
prediction scores and translation quality is consistent
across the three languages, suggesting that GAT’s ability
to accurately predict syntactic dependencies is a robust
indicator of its potential to enhance translation quality.
This underscores the importance of integrating syntactic
information into MT systems to achieve more accurate
and reliable translations. Also, The consistent improvement
in translation quality across different languages and MT
engines demonstrates the robustness of GAT in learning and
applying graph-based syntactic structures.

What Happens to Syntactic Features

Representational Similarity Analysis

Representational Similarity Analysis (RSA) is a technique
used to analyze the similarity between different represen-
tation spaces of neural networks. Inspired by the work of
Merchant et al. (2020), RSA uses n examples to build two
sets of comparable representations between neural networks.
The representations are then transformed into a similarity
matrix, and the Pearson correlation between the upper tri-
angles of the similarity matrix is used to obtain the final
similarity score between the representation spaces. We select

the source sentences corresponding to the prior 300 low-
quality translations and use them as the input stimulus for
our analysis. The stimulus consists of groups of sentences,
where each group is defined by a specific type of dependency
relation. For example, if the current dependency relation is x,
all source sentences of low-quality translations containing x
are grouped together to form one stimulus group. To provide
an example, consider the dependency relation ”obl:agent”
(oblique agent); all source sentences from the 300 low-
quality translations that contain the ”obl:agent” (oblique
agent) relation are grouped together. Similarly, for the depen-
dency relation ”nsubj:pass” (nominal subject in a passive
construction), all source sentences containing this relation
are grouped together. BERT representations are extracted
from both the baseline model and the SGB engines (e.g.,
baseline vs. SGBC) for each stimulus group, allowing us to
compare the representation spaces of the different models.
Cosine similarity is used as the kernel to compute the
similarity between the BERT representations of the stimulus
groups, helping us understand how the addition of syntactic
knowledge affects the representation space of BERT.

Table 9 lists partial results from an RSA analysis
comparing Baseline BERT and SGB models based on
syntactic prediction scores by GAT (full results are provided
in Appendix ). The analysis shows that the lowest RSA
scores mainly occur in the lower and middle layers of
BERT, regardless of whether the model is used in the
SGBC or SGBD engine. Specifically, when GAT achieves
high F1 scores for a particular dependency relation, the
representations of sentences containing this relation typically

∗RSA scores for representations from the baseline and SGBD models for
comparison.
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Table 8. Top-10 dependency relations with the highest GAT F1-score across various source language sentences, alongside
corresponding changes in translation quality as measured by QE scores from different MT engines.

Zh

Dependency Relation GAT F1-score Baseline QE score SGBC QE score SGBD QE score

mark 0.986 0.424 0.510 0.529
cc 0.984 0.436 0.513 0.512
conj 0.970 0.435 0.521 0.518
nummod 0.965 0.429 0.514 0.522
root 0.955 0.426 0.514 0.523
cop 0.945 0.426 0.520 0.511
det 0.935 0.438 0.530 0.528
case 0.934 0.428 0.511 0.526
nmod 0.933 0.429 0.509 0.523
amod 0.927 0.435 0.528 0.520

Ru

Dependency Relation GAT F1-score Baseline QE score SGBC QE score SGBD QE score

det 0.990 0.697 0.747 0.746
root 0.987 0.700 0.748 0.750
amod 0.982 0.707 0.753 0.752
case 0.978 0.702 0.748 0.760
aux:pass 0.974 0.718 0.749 0.760
cop 0.971 0.720 0.774 0.781
advmod 0.934 0.704 0.750 0.747
cc 0.930 0.698 0.751 0.748
flat:foreign 0.921 0.678 0.701 0.727
obl 0.900 0.701 0.749 0.749

De

Dependency Relation GAT F1-score Baseline QE score SGBC QE score SGBD QE score

case 0.992 0.504 0.568 0.574
cc 0.987 0.509 0.565 0.561
det 0.987 0.504 0.565 0.571
mark 0.981 0.511 0.561 0.570
advmod 0.932 0.506 0.573 0.582
root 0.931 0.503 0.570 0.574
aux:pass 0.927 0.498 0.576 0.556
amod 0.913 0.507 0.567 0.571
flat:name 0.876 0.505 0.551 0.565
aux 0.868 0.520 0.586 0.597

undergo significant changes in the lower and middle
layers of BERT. These changes are most pronounced in
layers 3-5 for Chinese and Russian, and in layers 5-
8 for German. This suggests that the syntactic structure
represented through graphs influences BERT’s reanalysis of
input sentences, leading to a syntactic reconstruction of the
input sentence. Also, the lower and middle layers of BERT
are particularly sensitive to modifications in modeling both
shallow and deep syntactic structures. In contrast, layers 9-
12 are primarily involved in processing abstract semantic
information and are task-oriented. However, the RSA scores
in these layers do not consistently reach 0.8 or higher (see
detailed results in Appendix ), indicating that changes in
the syntactic representation in the lower layers can also
affect the processing of deep linguistic information in the
upper layers. These findings further explain why integrating
syntactic structures represented through graphs can help
BERT reconstruct the structure of input sentences, leading to
a more accurate representation of source language sentences
and, consequently, improved translation quality.

Randomization of Word Order and Disruption of
Syntactic Graphs

The impact of BERT and graph-based syntactic knowledge
on enhancing translation quality presents an area for
further investigation, particularly concerning the robustness
of syntactic knowledge. This raises questions about the
relative contributions of BERT versus graph-based syntactic
knowledge to translation quality and the potential limitations
of the proposed MT engines. To address these questions, the
study involves altering the word order in source language
sentences from each language in the PUD corpus. For
example, the sentence ”A B C D E F” is transformed into
a randomized sequence like ”C B A D F E”. Both the
baseline and SGB engines are then tasked with translating
these modified sentences. The translations are subsequently
reassessed by Transquest QE model, which compares the
translations of the shuffled sentences against those of
the original, orderly sentences. This comparison provides
insights into the adaptability and efficacy of syntactic
knowledge in translation.

To further validate the importance of accurate syntactic
knowledge in enhancing the performance of the proposed
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Table 9. Top-5 syntactic labels with the highest F1 scores for GAT predictions for each language, along with the BERT layers where
the lowest RSA scores are observed.

Zh

Relation GAT F1-Score RSA Score BERT Layer RSA Score* BERT Layer

mark (marker) 0.986 0.418 5 0.407 3
cc (coordinating conjunction) 0.984 0.274 4 0.354 5
conj (conjunct) 0.970 0.380 5 0.340 4
nummod (numeric modifier) 0.965 0.274 4 0.237 3
root (root) 0.955 0.216 4 0.390 4

Ru

Relation GAT F1-Score RSA Score BERT Layer RSA Score* BERT Layer

det (determiner) 0.990 0.426 4 0.408 3
root(root) 0.987 0.466 3 0.504 3
amod (adjectival modifier) 0.982 0.444 3 0.391 4
case (case marking) 0.978 0.462 4 0.413 4
aux:pass (passive auxiliary) 0.974 0.357 3 0.327 3

De

Relation GAT F1-Score RSA Score BERT Layer RSA Score* BERT Layer

case (case marking) 0.992 0.686 5 0.759 2
cc (coordinating conjunction) 0.987 0.591 6 0.741 6
det (determiner) 0.987 0.584 8 0.817 6
mark (marker) 0.981 0.676 6 0.769 6
advmod (adverbial modifier) 0.932 0.733 6 0.774 8

MT engines, we conduct an additional experiment where
we intentionally introduce incorrect syntactic graphs. In this
experiment, we replace the parsers for Chinese, Russian,
and German with an English parser to extract the syntactic
structures of these three source languages. This deliberate
introduction of incorrect syntactic graphs is then applied to
the SGBC and SGBD engines. The goal is to observe how
the performance of these models is affected when provided
with inaccurate syntatic information.

As shown in Figure 3, scrambled word sequences in
source sentences cause a significant decrease in translation
quality for both baseline and SGB engines across all MT
directions. Integrating GAT into the encoder or providing
explicit syntactic knowledge to the decoder does not
guarantee a substantial improvement in translation quality. It
is unrealistic to expect the median QE scores in the box plots
to increase from below 0.4 to 0.7. This finding suggests that
BERT plays a more crucial role in forming representations of
source sentences and influencing translation quality in this
hybrid approach. The scrambling of input sentence order,
which leads to a loss of syntactic information, indicates
that while SGB engines, enhanced by graph-based syntactic
knowledge, can mitigate some of the negative effects, they
are still unable to interpret and comprehend the correct
semantics of jumbled sentences as effectively as humans.

The table 10 provides a detailed comparison of QE
scores for the SGBC and SGBD models when using correct
versus incorrect syntactic graphs. In all translation directions,
the introduction of incorrect syntactic graphs results in
a significant decrease in QE scores for both the SGBC
and SGBD models, with reductions exceeding 15% in all
cases. The largest decrease in QE scores is observed for
the Zh→En direction, where both the SGBC and SGBD
engines experience a decline of over 20%. Conversely,
the smallest decrease is noted for the De→En direction,

with reductions of 18.53% and 16.80% for the SGBC
and SGBD models, respectively. This difference may be
attributed to the closer linguistic proximity between German
and English, which results in fewer detrimental effects
from the parser’s incorrect syntactic structures. In contrast,
the lower similarity between Chinese and English means
that incorrect syntactic structures have a more significant
adverse impact on the SGBC and SGBD engines. Despite
the use of incorrect syntactic graphs, the SGBD engine
still demonstrates a greater likelihood of maintaining higher
translation performance, indicating that the SGBD model
benefits more from syntactic graphs, even when they are
incorrect.

These findings highlight that accurate syntactic graphs are
not only beneficial but essential for maintaining high-quality
translations, as inaccuracies in these graphs significantly
affect the performance of MT systems. However, the
performance degradation is not as severe as when input
sentences are randomized. This further suggests that in
the SGB models, BERT plays a dominant role, and while
incorrect syntactic graphs do harm performance, the impact
is more severe when the input errors are so significant that
even BERT cannot effectively process them.

What Happens when using Another
Pre-trained Model

The central focus of this investigation is to determine
whether the proposed use of syntactic knowledge on graphs
continues to benefit alternative pre-trained models, thereby
further improving translation quality. XLM-Roberta-large
(Conneau et al. 2020) replaces BERT in all three MT
scenarios. To distinguish from earlier versions, MT engines
incorporating XLM-Roberta-large are labeled Baseline-X,
SGBC-X, and SGBD-X. The Chinese and Russian (Zh→En
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Figure 3. The box plot distribution of QE scores for translations in three MT directions, contrasting translations from ordered
(above) versus disordered (below) source language sentence arrangements.

Table 10. Comparison of QE scores with correct and incorrect syntactic graphs for SGBC and SGBD engines and the percentage
decrease in QE scores.

SGBC Model SGBD Model

Correct Graph Incorrect Graph % Correct Graph Incorrect Graph %

Zh→En 0.682 0.510 -25.21% 0.726 0.558 -23.14%
Ru→En 0.757 0.621 -17.96% 0.770 0.618 -19.74%
De→En 0.669 0.545 -18.53 % 0.720 0.599 -16.80%

and Ru→En) MT engines utilize the UNPC corpus, whereas
the German (De→En) engines employ Europarl. Each
training set comprises 0.1M sentence pairs, with validation
and test sets featuring 6K parallel sentence pairs each.
Specifications include word embeddings of 1024, a learning
rate (excluding GAT) of 2e-5, a GAT learning rate of 5e-5,
a GAT dropout rate of 0.1, a batch size of 8, and the Adam
optimizer. Training is conducted on an RTX 3090 GPU.

Table 11 demonstrates that both SGB engines consistently
achieve higher BLEU scores than Baseline-X across various
MT directions, with the SGBD-X engine surpassing the
SGBC-X engine in every scenario through superior BLEU
scores. Furthermore, Figure 4 illustrates the QE scores
for translations within the PUD corpus for each engine.
Baseline-X yields the highest number of translations with
QE scores in the 0.2, 0.3, and 0.4 intervals along the X-
axis for both Zh and De, a pattern also observed in Ru at
the 0.4 and 0.5 intervals. A notable shift in the distribution
of translations for Zh and De occurs at the 0.5 mark on
the X-axis, where SGBC-X and SGBD-X engines begin
to outperform Baseline-X, a trend that persists up to the
0.8 interval. In Ru, the SGB engines similarly exhibit a
higher count of translations with elevated QE scores than the
Baseline engine at the 0.7 and 0.8 intervals on the X-axis.

The demonstrated efficacy of our method with XLM-
Roberta indicates its applicability beyond a single pre-trained
model, extending to encoder-based pre-trained models in
general. This suggests that our approach is not confined to a
specific architecture. However, adapting our method to other
pre-trained models, such as GPT or T5, presents distinct
challenges. These models are primarily decoder-based and
sequence-to-sequence models, respectively, which differ
significantly from the encoder-based architecture of XLM-
Roberta. Integrating syntactic knowledge into these models
may necessitate alternative strategies, such as modifying the
input format or adjusting the attention mechanisms. Despite
these challenges, the potential benefits of incorporating
syntactic knowledge into a broader range of pre-trained
models are substantial, as it can lead to more accurate and
contextually appropriate translations. Future research will
explore these adaptations to further enhance the robustness
and applicability of our method.

Conclusions

This study explores the integration of syntactic knowledge
into MT, particularly focusing on the evaluation of
BERT and GAT. Two SGB engines are introduced for
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Table 11. BLEU scores in different MT directions for the MT
engines that replaced BERT with XLM-Roberta-large.

Baseline-X SGBC-X SGBD-X
Zh→En 26.28 26.59 27.13
Ru→En 23.62 23.86 24.01
De→En 22.93 23.28 24.46

Figure 4. Distribution of QE scores for the MT engines after
replacing BERT. The Y-axis shows the number of sentences,
while the X-axis shows the range of scores for the QE scores of
the translations.

translating from Chinese to English (Zh→En), Russian
to English (Ru→En), and German to English (De→En),
and by leveraging GAT, the representation capabilities
of the BERT encoder are enhanced, and the decoder’s
understanding of source language sentence structures is
improved. The results demonstrate that the proposed SGB
engines outperform baseline models in terms of BLEU
scores, COMET QE scores, and TransQuest QE scores,
indicating significant improvements in translation accuracy
and robustness. When translating the PUD corpus, paired
t-tests confirm a statistically significant difference in
TransQuest QE scores, further validating the substantial
improvement in translation quality. We find that the SGB
engines, which incorporate graph-structured knowledge, are
more adept at recognizing the structural nuances of source
language sentences, thereby enhancing translation quality,

for instance, the SGB engines achieve notably higher QE
scores for Chinese sentences with the ”obl:agent” (oblique
agent) structure compared to baseline engines. The study
also evaluate the syntactic dependency learning performance
of GAT using the PUD corpus, and the results show
that the learning efficiency improves with an increase in
attention heads, though the optimal configuration varies
across languages, however, excessive model complexity,
beyond two layers, tends to degrade prediction performance,
highlighting the importance of balancing complexity and
predictive effectiveness. Additionally, the study investigate
the impact of GAT’s dependency prediction on translation
quality, and the findings indicate that accurate predictions
by GAT for certain dependency relations can lead to
better translations of source sentences containing those
dependencies. RSA experiments further reveal that although
GAT is not initially part of BERT, its integration allows
specific BERT layers to re-evaluate the syntactic structure
of source sentences through fine-tuning, and this effect
is particularly pronounced in the early and mid-layers of
BERT across different languages. Experiments on word
order randomization and parser replacement emphasize
the critical role of syntactic information embedded in
graph structures in enhancing translation quality. We also
show that our approach is not limited to BERT; similar
performance improvements have been achieved with XLM-
Roberta as an alternative model. In summary, this study
underscores the significant potential of combining syntactic
knowledge embedded in graph structures with language
models like BERT and XLM-Roberta to enhance MT, and
the findings support further research into these synergies to
improve translation accuracy and interpretability with better
knowledge about syntax.
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Appendix A. Representational Similarity
Analysis
Table 12 to Table 17 show the RSA tests of the dependency
relations in the given groups of BERT in the Baseline, SGBC
and SGBD models for different languages in 12 layers (L).
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Table 12. Comparison of the representation from BERT in the baseline and SGBC model when tested on Chinese sentences
containing target dependency.

Baseline vs SGBC
Zh Relations L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12
acl:relcl 0.891 0.733 0.877 0.239 0.452 0.656 0.506 0.712 0.587 0.623 0.442 0.424
advcl 0.875 0.734 0.203 0.479 0.378 0.685 0.462 0.693 0.664 0.668 0.517 0.522
advmod 0.856 0.794 0.878 0.292 0.528 0.781 0.576 0.733 0.638 0.697 0.514 0.512
amod 0.818 0.705 0.962 0.632 0.483 0.662 0.379 0.580 0.398 0.587 0.341 0.335
appos 0.908 0.770 0.901 0.411 0.429 0.694 0.519 0.653 0.599 0.677 0.483 0.485
aux 0.873 0.803 0.954 0.449 0.600 0.760 0.551 0.718 0.614 0.683 0.476 0.441
aux:pass 0.872 0.637 0.972 0.666 0.663 0.504 0.468 0.672 0.540 0.748 0.394 0.300
case 0.880 0.743 0.893 0.576 0.529 0.677 0.514 0.699 0.588 0.649 0.550 0.599
case:loc 0.898 0.744 0.216 0.322 0.477 0.752 0.553 0.762 0.684 0.669 0.509 0.587
cc 0.915 0.782 0.498 0.274 0.442 0.702 0.620 0.660 0.667 0.710 0.588 0.557
ccomp 0.847 0.767 0.808 0.403 0.442 0.783 0.572 0.757 0.684 0.752 0.503 0.570
clf 0.857 0.753 0.840 0.219 0.560 0.673 0.543 0.698 0.606 0.662 0.420 0.501
compound 0.877 0.748 0.871 0.402 0.483 0.727 0.545 0.692 0.615 0.650 0.506 0.684
conj 0.910 0.770 0.479 0.396 0.380 0.706 0.604 0.651 0.664 0.701 0.571 0.566
cop 0.898 0.785 0.480 0.238 0.484 0.743 0.578 0.722 0.720 0.738 0.634 0.613
csubj 0.889 0.895 0.283 0.467 0.623 0.751 0.563 0.761 0.814 0.799 0.557 0.567
dep 0.868 0.798 0.599 0.386 0.584 0.777 0.552 0.703 0.708 0.751 0.447 0.428
det 0.860 0.753 0.937 0.386 0.414 0.721 0.535 0.707 0.573 0.677 0.572 0.511
discourse:sp 0.898 0.810 0.961 0.855 0.784 0.804 0.635 0.802 0.638 0.747 0.627 0.615
flat 0.884 0.858 0.277 0.220 0.408 0.776 0.364 0.607 0.511 0.731 0.542 0.644
flat:name 0.868 0.769 0.330 0.285 0.579 0.594 0.644 0.689 0.594 0.643 0.374 0.409
iobj 0.674 0.478 0.427 0.798 0.382 0.679 0.635 0.701 0.719 0.414 0.289 0.391
mark 0.880 0.705 0.596 0.478 0.418 0.749 0.598 0.722 0.682 0.683 0.467 0.432
mark:adv 0.992 0.936 0.961 0.993 0.698 0.999 0.993 0.984 0.973 0.833 0.999 0.994
mark:prt 0.847 0.741 0.249 0.639 0.354 0.703 0.560 0.697 0.601 0.697 0.644 0.727
mark:relcl 0.889 0.771 0.859 0.545 0.418 0.674 0.484 0.686 0.607 0.655 0.484 0.494
nmod 0.882 0.751 0.870 0.584 0.566 0.668 0.485 0.675 0.579 0.620 0.569 0.593
nsubj 0.863 0.788 0.874 0.437 0.555 0.751 0.538 0.725 0.619 0.691 0.532 0.515
nsubj:pass 0.869 0.729 0.979 0.664 0.690 0.480 0.649 0.728 0.589 0.754 0.531 0.505
nummod 0.870 0.785 0.380 0.274 0.560 0.691 0.519 0.696 0.649 0.697 0.459 0.512
obj 0.873 0.792 0.881 0.469 0.507 0.720 0.577 0.713 0.639 0.683 0.507 0.493
obl 0.881 0.747 0.898 0.491 0.514 0.670 0.498 0.698 0.619 0.602 0.514 0.504
obl:agent 0.956 0.922 0.675 0.753 0.633 0.782 0.900 0.904 0.812 0.764 0.657 0.456
obl:patient 0.840 0.767 0.688 0.580 0.770 0.633 0.737 0.730 0.408 0.560 0.416 0.559
obl:tmod 0.867 0.763 0.391 0.200 0.357 0.817 0.587 0.739 0.697 0.697 0.294 0.403
xcomp 0.831 0.790 0.776 0.519 0.474 0.769 0.682 0.769 0.564 0.400 0.577 0.322
root 0.863 0.791 0.893 0.216 0.541 0.757 0.561 0.741 0.638 0.704 0.503 0.494
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Table 13. Comparison of the representation from BERT in the baseline and SGBD model when tested on Chinese sentences
containing target dependency.

Baseline vs SGBD
Zh Relations L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12
acl:relcl 0.902 0.726 0.267 0.237 0.231 0.574 0.339 0.554 0.477 0.554 0.425 0.444
advcl 0.893 0.747 0.278 0.425 0.251 0.554 0.425 0.522 0.454 0.507 0.386 0.411
advmod 0.874 0.768 0.262 0.260 0.401 0.664 0.409 0.492 0.493 0.581 0.448 0.548
amod 0.813 0.688 0.569 0.476 0.411 0.498 0.217 0.364 0.289 0.411 0.260 0.416
appos 0.905 0.779 0.463 0.454 0.357 0.657 0.432 0.455 0.457 0.610 0.466 0.449
aux 0.884 0.770 0.369 0.291 0.400 0.622 0.443 0.512 0.483 0.559 0.458 0.489
aux:pass 0.915 0.692 0.463 0.591 0.728 0.656 0.473 0.355 0.360 0.676 0.386 0.531
case 0.884 0.736 0.678 0.456 0.272 0.573 0.363 0.444 0.435 0.526 0.424 0.492
case:loc 0.909 0.771 0.372 0.297 0.299 0.627 0.391 0.491 0.477 0.489 0.379 0.475
cc 0.885 0.780 0.607 0.362 0.354 0.540 0.360 0.410 0.535 0.660 0.496 0.448
ccomp 0.886 0.725 0.355 0.249 0.400 0.666 0.381 0.459 0.400 0.482 0.401 0.449
clf 0.881 0.725 0.635 0.421 0.378 0.597 0.392 0.500 0.490 0.540 0.371 0.425
compound 0.888 0.750 0.484 0.398 0.308 0.639 0.388 0.447 0.438 0.550 0.443 0.434
conj 0.887 0.777 0.599 0.340 0.452 0.552 0.346 0.405 0.515 0.654 0.494 0.555
cop 0.894 0.772 0.431 0.434 0.272 0.638 0.455 0.524 0.510 0.498 0.480 0.393
csubj 0.913 0.820 0.748 0.591 0.483 0.831 0.347 0.655 0.563 0.643 0.608 0.689
dep 0.881 0.819 0.523 0.491 0.420 0.627 0.436 0.470 0.513 0.566 0.395 0.419
det 0.855 0.713 0.269 0.217 0.285 0.581 0.355 0.517 0.507 0.578 0.384 0.406
discourse:sp 0.922 0.747 0.234 0.603 0.614 0.705 0.409 0.577 0.640 0.760 0.578 0.434
flat 0.891 0.857 0.342 0.445 0.257 0.585 0.342 0.457 0.400 0.682 0.442 0.486
flat:name 0.897 0.776 0.282 0.419 0.274 0.481 0.385 0.362 0.395 0.482 0.309 0.455
iobj 0.699 0.917 0.556 0.470 0.357 0.669 0.695 0.560 0.598 0.467 0.386 0.558
mark 0.901 0.723 0.407 0.408 0.434 0.641 0.684 0.469 0.452 0.428 0.482 0.417
mark:adv 0.970 0.994 0.883 0.992 0.975 0.999 0.993 0.988 0.657 0.716 0.984 0.958
mark:prt 0.883 0.800 0.759 0.527 0.240 0.584 0.346 0.544 0.451 0.482 0.377 0.446
mark:relcl 0.892 0.754 0.459 0.226 0.239 0.575 0.352 0.520 0.478 0.551 0.452 0.520
nmod 0.874 0.737 0.552 0.424 0.298 0.595 0.353 0.422 0.439 0.510 0.395 0.495
nsubj 0.879 0.777 0.508 0.427 0.436 0.662 0.412 0.501 0.492 0.560 0.462 0.554
nsubj:pass 0.909 0.755 0.508 0.601 0.765 0.553 0.552 0.504 0.488 0.678 0.389 0.524
nummod 0.886 0.790 0.237 0.371 0.384 0.606 0.375 0.467 0.490 0.575 0.434 0.533
obj 0.880 0.779 0.424 0.272 0.388 0.626 0.413 0.496 0.509 0.554 0.451 0.435
obl 0.907 0.717 0.585 0.430 0.218 0.575 0.366 0.503 0.515 0.570 0.480 0.430
obl:agent 0.953 0.864 0.920 0.860 0.374 0.635 0.496 0.706 0.687 0.768 0.653 0.639
obl:patient 0.822 0.789 0.654 0.720 0.604 0.673 0.502 0.540 0.345 0.586 0.480 0.530
obl:tmod 0.872 0.781 0.442 0.229 0.375 0.589 0.377 0.536 0.571 0.647 0.544 0.605
xcomp 0.900 0.747 0.220 0.330 0.347 0.692 0.468 0.497 0.505 0.576 0.465 0.433
root 0.878 0.781 0.413 0.390 0.431 0.669 0.433 0.525 0.511 0.583 0.480 0.460
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Table 14. Comparison of the representation from BERT in the baseline and SGBC model when tested on Russian sentences
containing target dependency.

Baseline vs SGBC
Ru Relations L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12
acl 0.824 0.424 0.392 0.625 0.555 0.738 0.646 0.618 0.571 0.644 0.641 0.559
acl:relcl 0.617 0.309 0.310 0.454 0.412 0.640 0.519 0.635 0.576 0.553 0.506 0.475
advcl 0.710 0.613 0.556 0.609 0.409 0.631 0.623 0.734 0.756 0.748 0.685 0.587
advmod 0.877 0.608 0.428 0.651 0.618 0.764 0.711 0.723 0.721 0.746 0.734 0.618
amod 0.855 0.572 0.444 0.635 0.576 0.731 0.668 0.694 0.693 0.731 0.722 0.597
appos 0.679 0.617 0.286 0.700 0.606 0.707 0.591 0.700 0.769 0.774 0.787 0.569
aux 0.627 0.590 0.504 0.445 0.556 0.527 0.303 0.690 0.768 0.571 0.431 0.396
aux:pass 0.699 0.528 0.357 0.706 0.644 0.730 0.586 0.632 0.605 0.691 0.742 0.560
case 0.856 0.574 0.572 0.462 0.591 0.756 0.694 0.725 0.721 0.740 0.733 0.624
cc 0.872 0.679 0.365 0.654 0.584 0.740 0.726 0.731 0.746 0.766 0.743 0.594
ccomp 0.600 0.566 0.320 0.568 0.561 0.714 0.716 0.806 0.835 0.792 0.778 0.700
compound 0.636 0.587 0.603 0.477 0.474 0.996 0.975 0.988 0.940 0.614 0.942 0.994
conj 0.821 0.663 0.355 0.641 0.595 0.744 0.738 0.739 0.751 0.753 0.743 0.585
cop 0.803 0.548 0.317 0.629 0.547 0.797 0.593 0.633 0.723 0.757 0.768 0.612
csubj 0.525 0.463 0.480 0.368 0.426 0.432 0.517 0.750 0.707 0.621 0.475 0.332
det 0.851 0.670 0.626 0.426 0.537 0.721 0.642 0.678 0.707 0.744 0.713 0.607
fixed 0.759 0.579 0.578 0.633 0.641 0.659 0.615 0.689 0.685 0.699 0.671 0.578
flat 0.665 0.404 0.514 0.572 0.565 0.608 0.484 0.666 0.677 0.627 0.593 0.424
flat:foreign 0.704 0.435 0.548 0.588 0.604 0.704 0.554 0.729 0.758 0.700 0.604 0.419
flat:name 0.703 0.533 0.442 0.596 0.636 0.748 0.629 0.658 0.639 0.599 0.596 0.555
iobj 0.629 0.474 0.553 0.685 0.606 0.659 0.603 0.719 0.697 0.655 0.673 0.556
mark 0.668 0.528 0.231 0.500 0.516 0.629 0.603 0.699 0.723 0.691 0.642 0.498
nmod 0.860 0.478 0.453 0.648 0.544 0.740 0.658 0.696 0.699 0.730 0.726 0.610
nsubj 0.820 0.584 0.466 0.687 0.567 0.732 0.685 0.718 0.719 0.738 0.729 0.596
nsubj:pass 0.711 0.580 0.336 0.723 0.561 0.711 0.575 0.614 0.618 0.708 0.732 0.610
nummod 0.575 0.624 0.270 0.515 0.610 0.689 0.526 0.669 0.618 0.591 0.562 0.445
nummod:gov 0.640 0.401 0.443 0.579 0.759 0.783 0.531 0.612 0.589 0.644 0.640 0.543
obj 0.756 0.542 0.483 0.661 0.506 0.691 0.641 0.683 0.645 0.675 0.674 0.535
obl 0.764 0.592 0.479 0.657 0.568 0.746 0.684 0.711 0.702 0.709 0.704 0.591
obl:agent 0.638 0.394 0.509 0.825 0.837 0.891 0.851 0.340 0.582 0.717 0.770 0.607
orphan 0.733 0.661 0.241 0.620 0.937 0.800 0.519 0.330 0.651 0.424 0.558 0.638
parataxis 0.825 0.629 0.391 0.598 0.659 0.786 0.714 0.723 0.683 0.670 0.621 0.680
xcomp 0.756 0.658 0.486 0.683 0.575 0.762 0.712 0.731 0.748 0.761 0.754 0.620
root 0.855 0.587 0.466 0.704 0.597 0.751 0.701 0.729 0.722 0.744 0.739 0.623
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Table 15. Comparison of the representation from BERT in the baseline and SGBD model when tested on Russian sentences
containing target dependency.

Baseline vs SGBD
Ru Relations L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12
acl 0.918 0.416 0.296 0.617 0.501 0.541 0.611 0.562 0.573 0.752 0.779 0.627
acl:relcl 0.505 0.299 0.292 0.484 0.402 0.474 0.606 0.643 0.628 0.739 0.744 0.651
advcl 0.585 0.541 0.489 0.508 0.505 0.562 0.665 0.676 0.692 0.747 0.804 0.686
advmod 0.931 0.442 0.509 0.608 0.613 0.646 0.731 0.720 0.710 0.830 0.846 0.666
amod 0.910 0.548 0.488 0.391 0.573 0.605 0.679 0.683 0.674 0.796 0.777 0.594
appos 0.574 0.331 0.303 0.614 0.432 0.517 0.618 0.715 0.740 0.787 0.731 0.581
aux 0.344 0.563 0.494 0.457 0.433 0.288 0.321 0.208 0.321 0.496 0.458 0.401
aux:pass 0.491 0.385 0.327 0.537 0.633 0.528 0.618 0.708 0.723 0.779 0.669 0.588
case 0.903 0.502 0.504 0.413 0.602 0.634 0.721 0.722 0.721 0.808 0.808 0.639
cc 0.943 0.392 0.417 0.624 0.590 0.626 0.705 0.719 0.724 0.822 0.826 0.646
ccomp 0.517 0.432 0.341 0.521 0.540 0.615 0.722 0.741 0.763 0.864 0.885 0.667
compound 0.699 0.777 0.474 0.902 0.365 0.902 0.991 0.764 0.996 0.988 0.954 0.955
conj 0.887 0.442 0.452 0.600 0.402 0.594 0.687 0.698 0.707 0.799 0.797 0.634
cop 0.651 0.415 0.545 0.536 0.586 0.722 0.729 0.668 0.761 0.833 0.758 0.583
csubj 0.450 0.488 0.473 0.417 0.496 0.229 0.480 0.603 0.676 0.544 0.468 0.393
det 0.895 0.446 0.408 0.675 0.616 0.673 0.759 0.755 0.774 0.848 0.854 0.742
fixed 0.666 0.415 0.516 0.673 0.605 0.599 0.698 0.644 0.683 0.800 0.748 0.603
flat 0.643 0.511 0.452 0.519 0.430 0.512 0.627 0.690 0.711 0.749 0.764 0.620
flat:foreign 0.638 0.520 0.387 0.542 0.523 0.545 0.621 0.683 0.728 0.772 0.786 0.677
flat:name 0.657 0.357 0.472 0.587 0.546 0.531 0.647 0.664 0.678 0.786 0.772 0.641
iobj 0.519 0.287 0.599 0.663 0.552 0.563 0.675 0.690 0.671 0.787 0.821 0.699
mark 0.537 0.367 0.274 0.288 0.515 0.591 0.711 0.714 0.724 0.817 0.842 0.704
nmod 0.911 0.379 0.462 0.596 0.573 0.611 0.686 0.682 0.677 0.787 0.771 0.594
nsubj 0.884 0.528 0.508 0.623 0.576 0.621 0.706 0.720 0.711 0.803 0.785 0.598
nsubj:pass 0.504 0.314 0.292 0.538 0.585 0.574 0.634 0.667 0.695 0.791 0.703 0.551
nummod 0.467 0.588 0.389 0.525 0.426 0.460 0.555 0.648 0.647 0.786 0.827 0.703
nummod:gov 0.570 0.536 0.331 0.686 0.523 0.595 0.682 0.689 0.726 0.825 0.815 0.639
obj 0.826 0.578 0.487 0.598 0.508 0.609 0.703 0.717 0.717 0.793 0.775 0.613
obl 0.797 0.520 0.507 0.619 0.572 0.618 0.715 0.720 0.721 0.780 0.756 0.579
obl:agent 0.806 0.454 0.250 0.742 0.744 0.607 0.472 0.633 0.640 0.694 0.479 0.299
orphan 0.301 0.240 0.524 0.420 0.750 0.709 0.579 0.427 0.419 0.322 0.228 0.243
parataxis 0.935 0.444 0.472 0.657 0.574 0.618 0.704 0.733 0.711 0.828 0.833 0.643
xcomp 0.611 0.587 0.593 0.565 0.569 0.665 0.729 0.765 0.754 0.830 0.808 0.648
root 0.901 0.506 0.504 0.637 0.612 0.649 0.720 0.724 0.716 0.806 0.787 0.612
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Table 16. Comparison of the representation from BERT in the baseline and SGBC model when tested on German sentences
containing target dependency.

Baseline vs SGBC
De Relations L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12
acl:relcl 0.696 0.776 0.763 0.690 0.601 0.604 0.670 0.627 0.621 0.629 0.613 0.629
advcl 0.640 0.776 0.781 0.716 0.645 0.506 0.632 0.602 0.572 0.514 0.527 0.575
advmod 0.775 0.819 0.841 0.800 0.737 0.733 0.750 0.793 0.747 0.790 0.750 0.748
amod 0.651 0.739 0.774 0.721 0.631 0.662 0.708 0.645 0.670 0.641 0.644 0.663
appos 0.695 0.766 0.814 0.751 0.682 0.664 0.702 0.667 0.671 0.678 0.680 0.674
aux 0.649 0.796 0.795 0.716 0.657 0.649 0.638 0.669 0.690 0.700 0.670 0.648
aux:pass 0.644 0.735 0.766 0.723 0.627 0.721 0.684 0.661 0.700 0.641 0.629 0.661
case 0.734 0.773 0.781 0.747 0.686 0.694 0.708 0.691 0.689 0.699 0.765 0.716
cc 0.613 0.721 0.719 0.675 0.602 0.591 0.631 0.592 0.606 0.595 0.595 0.598
ccomp 0.686 0.768 0.824 0.767 0.757 0.695 0.661 0.698 0.702 0.706 0.729 0.664
compound 0.687 0.780 0.785 0.733 0.661 0.649 0.721 0.700 0.688 0.653 0.654 0.691
compound:prt 0.671 0.760 0.763 0.662 0.703 0.694 0.730 0.680 0.717 0.735 0.681 0.790
conj 0.586 0.716 0.712 0.661 0.588 0.583 0.620 0.588 0.588 0.592 0.595 0.611
cop 0.679 0.794 0.808 0.772 0.649 0.690 0.753 0.735 0.730 0.670 0.695 0.726
csubj 0.686 0.730 0.860 0.809 0.770 0.853 0.798 0.660 0.824 0.860 0.714 0.737
cc:preconj 0.633 0.443 0.411 0.823 0.647 0.557 0.563 0.471 0.424 0.471 0.462 0.415
csubj:pass 0.868 0.742 0.886 0.904 0.492 0.937 0.977 0.731 0.760 0.806 0.785 0.638
det 0.628 0.757 0.773 0.724 0.654 0.694 0.702 0.584 0.597 0.596 0.587 0.597
expl 0.568 0.803 0.658 0.669 0.607 0.438 0.653 0.442 0.566 0.600 0.452 0.443
flat 0.609 0.770 0.921 0.721 0.761 0.554 0.923 0.455 0.577 0.520 0.786 0.649
flat:name 0.686 0.719 0.729 0.698 0.678 0.633 0.706 0.677 0.662 0.641 0.649 0.672
iobj 0.692 0.826 0.792 0.706 0.681 0.784 0.735 0.692 0.698 0.728 0.781 0.803
mark 0.693 0.787 0.799 0.752 0.701 0.676 0.684 0.696 0.708 0.681 0.682 0.693
nmod 0.725 0.767 0.776 0.750 0.677 0.711 0.695 0.586 0.649 0.649 0.617 0.657
nmod:poss 0.694 0.758 0.758 0.731 0.667 0.719 0.681 0.689 0.671 0.694 0.671 0.681
nsubj 0.655 0.794 0.806 0.768 0.695 0.705 0.725 0.610 0.780 0.788 0.793 0.760
nsubj:pass 0.694 0.758 0.758 0.731 0.667 0.719 0.681 0.689 0.671 0.694 0.671 0.681
nummod 0.716 0.858 0.839 0.728 0.714 0.705 0.730 0.777 0.790 0.714 0.741 0.729
obj 0.625 0.773 0.785 0.729 0.654 0.672 0.682 0.528 0.534 0.646 0.640 0.671
obl 0.659 0.767 0.776 0.753 0.684 0.685 0.703 0.656 0.678 0.663 0.667 0.706
obl:tmod 0.683 0.741 0.791 0.716 0.660 0.740 0.696 0.696 0.732 0.686 0.681 0.815
parataxis 0.652 0.798 0.792 0.756 0.775 0.674 0.645 0.658 0.700 0.667 0.674 0.689
xcomp 0.841 0.884 0.885 0.806 0.802 0.822 0.818 0.852 0.884 0.863 0.816 0.827
root 0.782 0.843 0.841 0.834 0.765 0.726 0.736 0.758 0.783 0.763 0.754 0.739
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Table 17. Comparison of the representation from BERT in the baseline and SGBD model when tested on German sentences
containing target dependency.

Baseline vs SGBD
De Relations L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12
acl:relcl 0.793 0.740 0.860 0.831 0.845 0.883 0.850 0.828 0.863 0.801 0.778 0.689
advcl 0.773 0.720 0.843 0.815 0.820 0.894 0.867 0.856 0.894 0.842 0.840 0.747
advmod 0.782 0.796 0.849 0.832 0.856 0.859 0.827 0.774 0.787 0.783 0.785 0.794
amod 0.773 0.732 0.802 0.816 0.844 0.808 0.801 0.800 0.812 0.768 0.766 0.780
appos 0.762 0.778 0.806 0.830 0.855 0.729 0.812 0.820 0.817 0.767 0.735 0.788
aux 0.747 0.735 0.833 0.810 0.836 0.796 0.717 0.777 0.781 0.742 0.746 0.734
aux:pass 0.766 0.728 0.799 0.839 0.867 0.825 0.825 0.806 0.815 0.746 0.798 0.748
case 0.774 0.759 0.819 0.812 0.849 0.830 0.825 0.820 0.826 0.790 0.797 0.797
cc 0.777 0.780 0.764 0.789 0.816 0.741 0.775 0.766 0.779 0.759 0.749 0.742
ccomp 0.792 0.794 0.822 0.831 0.877 0.841 0.829 0.829 0.818 0.775 0.788 0.798
compound 0.790 0.788 0.845 0.847 0.849 0.797 0.778 0.789 0.790 0.798 0.790 0.780
compound:prt 0.795 0.795 0.808 0.791 0.827 0.811 0.831 0.850 0.879 0.865 0.835 0.804
conj 0.797 0.787 0.795 0.784 0.814 0.773 0.784 0.778 0.787 0.786 0.780 0.783
cop 0.792 0.779 0.839 0.831 0.874 0.855 0.840 0.830 0.839 0.801 0.797 0.790
csubj 0.679 0.767 0.939 0.901 0.922 0.651 0.668 0.664 0.710 0.792 0.733 0.692
cc:preconj 0.634 0.557 0.642 0.684 0.818 0.459 0.411 0.595 0.678 0.673 0.644 0.520
csubj:pass 0.843 0.805 0.799 0.770 0.786 0.850 0.897 0.839 0.773 0.774 0.781 0.800
det 0.872 0.889 0.837 0.819 0.836 0.817 0.851 0.849 0.831 0.820 0.866 0.827
expl 0.753 0.770 0.719 0.850 0.884 0.840 0.822 0.829 0.860 0.843 0.824 0.786
flat 0.679 0.610 0.913 0.958 0.933 0.956 0.977 0.958 0.953 0.835 0.747 0.779
flat:name 0.682 0.643 0.817 0.831 0.869 0.833 0.829 0.833 0.832 0.811 0.777 0.655
iobj 0.769 0.797 0.791 0.746 0.793 0.832 0.889 0.871 0.881 0.869 0.843 0.789
mark 0.804 0.812 0.798 0.804 0.848 0.796 0.813 0.814 0.802 0.802 0.799 0.801
nmod 0.759 0.716 0.834 0.825 0.835 0.824 0.814 0.744 0.735 0.762 0.748 0.744
nmod:poss 0.796 0.795 0.793 0.809 0.841 0.768 0.815 0.786 0.785 0.792 0.782 0.797
nsubj 0.794 0.795 0.835 0.820 0.854 0.851 0.834 0.717 0.735 0.731 0.771 0.723
nsubj:pass 0.888 0.875 0.821 0.853 0.878 0.829 0.828 0.808 0.819 0.855 0.819 0.882
nummod 0.844 0.879 0.847 0.842 0.841 0.856 0.854 0.854 0.859 0.892 0.871 0.849
obj 0.775 0.784 0.801 0.799 0.824 0.812 0.797 0.732 0.793 0.760 0.791 0.799
obl 0.787 0.793 0.814 0.812 0.850 0.828 0.820 0.814 0.818 0.780 0.746 0.782
obl:tmod 0.794 0.805 0.829 0.816 0.870 0.805 0.752 0.815 0.849 0.844 0.858 0.851
parataxis 0.792 0.792 0.811 0.877 0.866 0.776 0.726 0.729 0.754 0.753 0.739 0.767
xcomp 0.877 0.889 0.861 0.847 0.868 0.858 0.858 0.855 0.856 0.888 0.893 0.875
root 0.797 0.795 0.828 0.819 0.854 0.846 0.829 0.717 0.791 0.728 0.772 0.743
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