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Abstract.
Machine learning (ML) methods have demonstrated strong predictive capabilities when trained on large datasets. However, in

domains where data is scarce or sensitive, ML models often exhibit suboptimal performance. Our hypothesis is that semantically
enriching the available training dataset can enhance the predictive power of ML models, particularly in data-scarce scenarios.
To investigate this hypothesis, we propose novel neuro-symbolic approaches that augment tabular data with KG information,
providing additional context and structure to improve model performance. Concretely, we introduce and examine several inte-
gration techniques of KG information through embeddings and explore how different KG embedding algorithms affect model
performance, with a specific focus on accuracy and F2 scores. Our evaluation involves four distinct ML algorithms and four KG
embedding techniques. We apply our approach to binary classification tasks on tabular data, including heart disease and chronic
kidney disease. Our experimental results show improvements in performance particularly when tabular data is augmented with
distance features computed in the embedding space. Notably, we achieve gains in F2 scores, such as an increase in XGBoost
performance from 75.19% to 90.85% for heart disease prediction. These findings demonstrate the potential of KG-based aug-
mentation to enhance ML performance.

Keywords: Neuro-symbolic AI, Knowledge Graph Embeddings, Machine Learning, Data Augmentation

1. Introduction

Machine learning (ML) has revolutionized various domains by providing powerful tools for pattern recognition,
predictive analytics, and data-driven decision-making. Techniques such as deep learning have achieved remarkable
success in fields ranging from computer vision [13, 55] to natural language processing [31, 41]. These advancements
have been largely driven by the availability of large datasets and the computational power to process them.

However, ML methods often face significant challenges related to data quality and availability. Data sparsity,
imbalance, and sensitivity can severely hinder the performance of ML models [39]. In the medical domain, one
important task is predicting patient outcomes, for instance, determining the presence or absence of a disease based
on clinical observations. This task often suffers from an insufficient amount of labeled data due to privacy concerns
[27]. Although advances have been made, models trained solely on tabular data fail to fully capture the domain’s
complexity and semantics, limiting their ability to generalize effectively [44].

To overcome these limitations, neuro-symbolic (NeSy) AI has emerged as a promising approach to integrate
domain knowledge into ML models. NeSy AI combines the strengths of symbolic AI—known for logical reasoning
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and explainability—with sub-symbolic methods such as deep learning [16, 23, 45]. In particular, structured semantic
knowledge such as knowledge graphs (KGs) has emerged as a key element in bridging the gap, providing a structured
way to represent relationships between entities and capture domain-specific semantics [4, 17, 22, 59]. KGs have been
widely used in tasks such as knowledge graph completion [34] and link prediction [53]. However, their potential
to enhance ML predictions on tabular data by incorporating semantic knowledge through embeddings remains
underexplored.

We propose integrating KGs into ML pipelines to enhance tabular data with structured, domain-specific infor-
mation. Drawing upon techniques from the Semantic Web community, our approach begins by utilizing ontologies
to formalize domain semantics. We then construct KGs based on these ontologies, enriching the datasets with
structured knowledge specific to the medical domain. Subsequently, we employ knowledge graph embeddings to
transform the KGs into numerical vector representations suitable for ML algorithms. By embedding relationships
and domain knowledge from KGs into these vectors, our methodology enhances the ML pipeline by augmenting
the datasets with semantic knowledge, aiming to improve predictive performance—especially in data-scarce do-
mains. This study specifically explores binary classification tasks in both medical predictions (heart disease and
chronic kidney disease) where domain-specific structure is crucial for robust prediction. Our research is guided by
the following research questions:

– RQ1: How can KGs be optimally infused into an ML pipeline to enhance performance in terms of accuracy
and F2 score?

– RQ2: How does the choice of knowledge graph embedding algorithms affect the performance of machine
learning models when used to augment tabular data?

– RQ3: How do different ML algorithms perform when KG-based information is integrated into the input data?

To address these research questions, we took an exploratory approach, systematically investigating each aspect
step by step. For RQ1, we derived five sub-hypotheses to examine how knowledge graphs can be optimally integrated
into ML pipelines to enhance performance metrics such as accuracy and F2 score (with the reason for selecting these
metrics explained in Section 6.2). We tested these hypotheses using eight different approaches, each incorporating
knowledge graphs and embeddings in various ways. For RQ2 and RQ3, we empirically evaluated the impact of
different knowledge graph embedding algorithms and ML models across two medical domains—heart disease and
chronic kidney disease prediction.

Building on our previous work [35], we extend and formalize our methodology for integrating KG embeddings
into ML pipelines. We employ two additional embedding techniques alongside those used previously to trans-
form the KGs into numerical vector representations suitable for ML algorithms. We developed and tested different
approaches based on five sub-hypotheses derived from our first research question, providing a comprehensive eval-
uation of their impact on model performance in heart and kidney disease prediction. Our study demonstrates the
effectiveness of incorporating ontological knowledge into the ML training process, highlighting the potential for
improved predictive performance in data-scarce domains and its applicability across various fields where ontologies
can be developed or expanded.

The remainder of this paper is organized as follows: In Section 2, we define the key concepts that we use in our
work. This is followed by an overview of related work in Section 3. In Section 4, we present an overview of our
proposed approach, with more detailed explanations about our approaches provided in Section 5. Our experimental
analysis is discussed in Section 6, where we outline the goals and setup of our experiments. In Section 7, we present
and analyze the outcomes of our experiments. Finally, we summarize our findings and outline directions for future
work in Section 8.

2. Problem Description and Background Information

In this section, we outline the problem we aim to address, followed by introducing the key concepts that we use
throughout the paper, beginning with ontologies, knowledge graphs, and knowledge graph embeddings.
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Fig. 1. Baseline for ML prediction on tabular data.

2.1. Problem Description

In this study, we address the challenge of predicting heart disease and chronic kidney disease using patient medical
records in tabular data format. Each dataset can be represented as a table T ∈ Rn×m , where n is the number of
patient instances and m is the number of features or attributes. These features capture patient demographics, clinical
measurements, and diagnostic information essential for disease prediction. For heart disease prediction, we consider
features such as age, sex, chest pain type, resting blood pressure, serum cholesterol, fasting blood sugar, and resting
electrocardiogram results. The kidney disease dataset similarly includes essential attributes, including age, blood
pressure, specific gravity, albumin, blood glucose, blood urea, serum creatinine, hemoglobin, and red and white
blood cell counts.

We focus on binary classification to predict the presence or absence of these diseases. Formally, given the dataset
T , the goal is to learn a function f : Rm → {0, 1} that maps a patient’s feature vector to a binary outcome indicating
disease presence (1) or absence (0). As illustrated in Figure 1, the tabular data T serves as input to machine learning
models, which then output predictions regarding disease presence.

For example, given a patient’s data (e.g., age 62, female, asymptomatic, resting blood pressure 140, cholesterol
268, no fasting blood sugar, max heart rate 160, downsloping slope and thalassemia), our model aims to determine
the likelihood of heart disease. Similarly, a record for kidney disease might involve attributes such as age 68, blood
pressure 70, specific gravity 1.01, and blood urea 54. The objective is to accurately predict disease presence.

Due to the sensitive nature of medical data, datasets in this domain are often limited or partially incomplete,
impacting model performance. This scarcity of data, combined with varying data quality, presents a challenge to
achieving optimal prediction accuracy, necessitating robust preprocessing and, potentially, data augmentation strate-
gies to improve model generalizability and reliability.

2.2. Background Information

Given the problem definition described in the previous subsection, our approach aims to augment these datasets
by integrating semantic information to enhance predictive capabilities. To achieve this, we leverage ontologies to
capture the domain knowledge, and then we use knowledge graphs to enrich the datasets with ontologies. We then
need knowledge graph embeddings to transform the knowledge graphs into a vector space suitable for machine
learning models. In the following we discuss each of these concepts in detail.

Ontology: Originally a philosophical term, ontology refers to the study of existence and the nature of being. In
computer science, Gruber [20] redefined ontology as “explicit specifications of conceptualizations”, where a con-
ceptualization represents a simplified, abstract view of a domain to capture essential aspects. An ontology establishes
a standardized vocabulary for knowledge sharing within a specific domain. Formally, an ontology represented as
O = (C,R,HC) encompasses a collection of concepts C, a set of relations R, and a hierarchical structure of concepts
HC . Each relation r ∈ R indicates an association between pairs of concepts, such that R ⊆ C × C. The concept
hierarchy HC is a subset of C ×C, illustrating the relationships among concepts.

Knowledge Graphs: Knowledge graphs (KGs) expand on ontologies by capturing not only the structured rela-
tionships between concepts but also the specific instances and values within a domain. Originally popularized by
Google in 2012 [48] to enhance search understanding, KGs have since become integral in a range of applications,
providing a structured, machine-readable format to represent knowledge. We define the KG as KG = (E,R′, L,Tr)
where:

– E represents the set of entities in the knowledge graph. Each entity e ∈ E can represent a real-world concept,
object or idea, such as ’Person’ or ’City’.
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– R′ represents the set of instantiated relations between entities within the KG such as ’hasAge’ or ’worksAt’.
– L represents the set of literals, which are attributes associated with entities, such as numerical values or textual

descriptions (e.g., ‘30’ or ‘Alice’).
– Tr denotes a set of triples, where each triple tr = (e1, e, e2) ∈ Tr represents a fact or statement in the

knowledge graph.

KG embeddings: While KGs provide a structured representation of entities and their relationships, they can be-
come highly complex as the number of entities and relations grows. To enable efficient computation, learning, and
reasoning over KGs, knowledge graph embeddings (KGEs) are commonly used [5, 34, 54]. KG embeddings trans-
form entities and relations from a discrete symbolic space into a continuous vector space, capturing the structure and
semantics of the KG in a form that is compatible with ML algorithms. KGE algorithms can be broadly categorized
into three main types based on their methodology and objectives: translational distance models, semantic matching
models, and random walk-based models. In the following, we briefly describe the embedding algorithms used in
our experiments: Node2Vec [19] and Rdf2Vec [43] as random-walk based models that leverage the graph structure,
DistMult [57] as a semantic matching model, and TransH [54] as a translational model.

– Node2Vec uses a flexible random walk strategy to combine depth-first and breadth-first sampling, allowing
it to capture various structural features of the graph whether they are labeled or unlabeled, directed or undi-
rected. Node2Vec employs random walks, incorporating an adjustable bias parameter that allows for targeted
exploration of local neighborhoods as well as a broader global search.

– RDF2Vec is designed specifically for RDF (Resource Description Framework) graphs within the Semantic
Web, RDF2Vec generates embeddings for entities and relations by leveraging random walks to create se-
quences from the graph. These sequences are then transformed into embeddings using Word2Vec, making
RDF2Vec particularly effective at capturing the semantic and relational attributes present in RDF data. While
both RDF2Vec and Node2Vec utilize random walks, RDF2Vec focuses more on semantic relationships within
the context of the Semantic Web, whereas Node2Vec emphasizes structural characteristics applicable to a wider
range of graph types.

– DistMult is a semantic matching model that uses a bilinear scoring function to evaluate the interactions be-
tween entities and relations in a knowledge graph. In this model, each relation is represented as a diagonal
matrix, simplifying the bilinear form to a weighted element-wise multiplication of entity embeddings. While
this approach effectively captures pairwise relationships, it inherently assumes that all relations are symmetric,
which may restrict its expressiveness for datasets containing asymmetric relations.

– TransH is a translational model that represents entities as vectors and relations as hyperplanes in the embedding
space. Each relation is associated with a specific hyperplane and a translation vector on that hyperplane. Entities
are projected onto the hyperplane of a relation before the translation operation is applied. This method allows
entities to have different representations in the context of different relations, enabling the model to capture
complex and diverse relationships thereby improving its ability to represent multiple types of relationships in
a knowledge graph.

3. Related work

We review related work on (i) the categorization of neuro-symbolic approaches, positioning our work within
these categories, (ii) we discuss the use of ML models in disease prediction and (iii) enhancing ML predictions with
semantic knowledge, and we conclude by discussing the novelty of our approach.

Categorization of Neuro-Symbolic Approaches In recent years, the field of neuro-symbolic AI has gained sig-
nificant attention due to its potential to combine the strengths of both symbolic and sub-symbolic AI [16, 23, 45].
Symbolic AI excels at logical reasoning and explainability, while sub-symbolic approaches, such as deep learn-
ing, have proven effective in pattern recognition and data-driven decision-making. Combining these approaches,
neuro-symbolic AI seeks to leverage the best of both worlds: the learning capability of sub-symbolic methods and
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the structured, interpretable reasoning of symbolic methods. Several efforts have focused on categorizing neuro-
symbolic approaches. Kautz et al. [30] classify neurosymbolic systems into six types based on the interaction be-
tween neural networks and symbolic reasoning. Type 1 employs standard deep learning with symbolic inputs and
outputs, while Type 2 combines neural networks with symbolic solvers, as seen in systems such as AlphaGo. Type
3 uses neural networks for tasks such as object detection, while symbolic systems handle complementary tasks
such as query answering. In Type 4, symbolic knowledge is embedded into neural network training, whereas Type
5 incorporates symbolic rules as constraints in the loss function. Finally, Type 6 aims for fully integrated systems,
merging symbolic reasoning with neural architectures, although fully mature combinatorial reasoning within such
systems remains a challenge. Our approach belongs to Type 4 of Kautz’s classification, where symbolic knowledge
is incorporated into the training process.

Similarly, Sheth et al. [33, 47] identify three levels of knowledge infusion in neural models: shallow, semi-deep,
and deep. Shallow infusion introduces syntactic and symbolic knowledge at the input level, semi-deep infusion
introduces external knowledge into intermediate layers via attention mechanisms or constraints, and deep infusion
embeds structured, multi-layered knowledge into the network itself, aligning abstraction layers with learning stages.
Our work adopts the shallow infusion approach by enriching input data with syntactic and symbolic knowledge,
enhancing the model’s performance.

Dash et al. [12] categorize methods for integrating domain-specific knowledge into deep neural networks into
three main approaches: enhancing input data, modifying the loss function, and adjusting the network architecture.
Our research aligns with the input transformation category, where domain-specific knowledge is integrated by en-
riching the input data provided to the ML models.

Van Harmelen and ten Teije [51] introduced a conceptual framework known as "boxology," which outlines various
patterns for integrating machine learning with semantic web technologies. Breit et al. [6] expanded this framework
by identifying 44 distinct patterns used in hybrid learning and reasoning techniques, based on a review of around
500 papers from 2010 to 2020. Our approach falls under the T patterns, specifically T4, where input transformations
using symbolic knowledge are applied to improve model performance.

As a summary, our approach falls under the shallow infusion category as described by Sheth et al. [47], where
syntactic and symbolic knowledge is introduced at the input level. It aligns with Type 4 in Kautz’s classification [30],
as symbolic knowledge is embedded into the training process. Furthermore, it belongs to the input transformation
approach discussed by Dash et al. [12], where domain-specific knowledge enhances the input data provided to
machine learning models. Finally, our work corresponds to the T4 pattern in the "boxology" framework, focusing
on input transformations to improve model performance.

Machine Learning Models in Disease Prediction The application of ML in healthcare has attracted significant
research interest due to its potential. Kraivsnikovic et al. [32] proposed an approach leveraging fine-tuned BERT
models to analyze German pathology reports. Their work highlights how domain-specific adaptations can enhance
the interpretability and utility of ML models in medical diagnostics by effectively capturing contextual represen-
tations. Additionally, ML algorithms have been successfully employed in predicting diseases such as heart disease
[29, 42, 46, 56] and kidney disease [8, 40, 52, 58], using various techniques such as data preprocessing, feature
selection, and hyperparameter tuning to enhance prediction accuracy.

Several studies have also explored combining ML methods to further improve performance. For instance, Mohan
et al. [36] combined random forest and linear methods to enhance heart disease prediction, while Ali et al. [2]
introduced a framework for heart failure prediction using dual support vector machine (SVM) models—one for
feature selection and the other for the prediction task.

Although these models demonstrate good predictive performance, they often rely on extensive preprocessing [21],
feature selection, and hyperparameter tuning to achieve optimal results. Moreover, the effectiveness of ML models
can be limited by insufficient or sub-optimal quality data. In this context, healthcare ontologies [9, 14, 26, 28, 38]
offer a structured, semantically rich layer of information that can enhance the contextual understanding of ML
models, which is further explored in this work.

Enhancing ML Predictions with Semantic Knowledge Recent research has increasingly focused on integrat-
ing semantic knowledge, such as KGs and ontologies, into ML models to enhance their performance. KGs have
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been widely applied in various domains, notably improving feature extraction and entity representation in natu-
ral language processing tasks. For instance, Moussallem et al. [37] demonstrated how augmenting neural machine
translation systems with KGs improved the translation quality by enhancing the semantic understanding of termino-
logical expressions. Similarly, KG-based input enhancement has been shown to improve recommendation systems
and community detection, enhancing both accuracy and explainability [4].

Table 1
Summary of related work on integrating semantic knowledge into ML models

Paper Domain/Task KG/Ontology ML Algorithm KGE Method of Including the KG

[24]
Classification on tabular

and image data
DBPedia, Wikidata,

YAGO3, ConceptNet
Neural networks

Logic rules mining from
KGs during learning

[18]
Healthcare /

Predicting hospitalization
DBpedia, Wikidata
domain specific1 SVM, RF, LogReg

Enriching EMR with features
from ontologies

[49]
Smart building
management

custom Neural networks
Integrating data from sensors

with knowledge

[44]
High-dimensional
tabular learning

Custom auxiliary
KG

Multilayer Perceptron
(MLP)

KG to regularize a MLP
for tabular datasets

[37] Neural machine translation DBPedia RNN and Transformer ✓
1) Entity Linking + KGE

2) Semantic enrichment of KGE
via entity labels

[3]
Text classification and

natural language inference
Freebase, WordNet LSTM ✓

KG embeddings injected
into the model for enriched

representation learning

[60] Credit card fraud detection DBPedia Deep neural network ✓

Augmentation of dataset with
semantic vector representation of

countries and public holidays
information

Our paper
Disease prediction

Healthcare
SNOMED

Custom KG
KNN, NN, SVM,

XGBoost
✓

Augmenting tabular data with
KG embeddings

Moreover, KG-augmented neural networks have demonstrated improved performance in text classification and
natural language inference tasks. Annervaz et al. [3] showed that integrating structured knowledge from KGs not
only improved model accuracy but also allowed models to perform well with less labeled data, addressing the com-
mon issue of data sparsity. Ziegler et al. [60] adopted a similar approach by incorporating semantic knowledge
through graph embeddings for credit card fraud detection, demonstrating how the injection of background knowl-
edge—such as public holidays from DBpedia into neural models could enhance classification outcomes.

In addition to NLP and fraud detection, Szilagyi et al. [49] applied semantic knowledge in smart building man-
agement by integrating taxonomies, schemas, and logic rules with ML models. This hybrid system optimized build-
ing management by combining data-driven insights with rule-based reasoning, showing the potential of semantic
knowledge in enhancing decision-making processes. Huang et al. [24] introduced an Abductive Learning with KG
approach that automatically mines logic rules from KGs and integrates them into ML models using a knowledge-
forgetting mechanism to filter irrelevant information, thereby improving model performance even with limited la-
beled data.

In healthcare, Gazzotti et al. [18] demonstrated how augmenting sparse electronic medical records (EMRs) with
ontological resources improved the predictive capabilities of ML algorithms, specifically in hospitalization predic-
tion. Ontologies such as DBPedia, Wikidata and the more domain specific ones provide structured medical knowl-
edge, enabling a richer representation of patient data. Similarly, Ruiz et al. [44] introduced the PLATO method,
which uses a KG to regularize a multilayer perceptron for tabular datasets, showing that semantic knowledge can
help ML models handle high-dimensional and low-sample-size data more effectively.

These studies highlight the growing importance of integrating semantic knowledge into ML models to address
challenges such as data quality, sparsity, and explainability across different domains. Table 1 provides an overview

1Anatomical Therapeutic Chemical Classification, National Drug File - Reference Terminology, International Primary Care Classification
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of these studies, outlining the types of semantic knowledge used, the domains or tasks covered, the ML models
applied, the incorporation of KGEs, and the integration methods employed. These approaches generally fall into
two main categories: (i) direct integration of structured knowledge through explicit rules or ontological features and
(ii) representation learning via KGEs, where entities and relations are embedded into a continuous vector space,
allowing downstream ML models to leverage the semantic structure.

Although this prior research has demonstrated that embedding-based methods can improve ML performance,
most existing work relies on large, general-purpose KGs, such as Wikidata or DBpedia. In contrast, our recent
study [35] introduced four approaches for augmenting tabular data with KGEs using two embedding algorithms,
focusing on smaller, domain-specific ontologies. These initial methods illustrated the potential of embedding-driven
enrichment exploring how semantic context could be systematically incorporated into tabular datasets.

Building on that foundation, this paper proposes four additional approaches that calculate various metrics in
the embedding space to enrich tabular data with additional semantic context. Furthermore, we employ two more
KG embedding algorithms, extending the methodology and formalizing our approaches. We also perform a more
thorough evaluation of the proposed techniques, applying them to the prediction of heart disease and chronic kidney
disease.

Compared to other studies shown in Table 1, our method goes beyond simply embedding entities and relations,
we exploit the embedding space itself to derive meaningful metrics that further enrich tabular features. Moreover,
instead of relying on extensive, generic KGs, our approach leverages small, existing domain-specific ontologies (or
select subsets of existing big ontologies), which we populate with relevant tabular data to form task-specific KGs.
Such domain-focused strategies remain underexplored within medical prediction and systems. By emphasizing
smaller ontologies and extracting deeper semantic insights from the embedding space, our work aims to advance
semantic knowledge integration for ML in medical and other specialized domains.

4. Knowledge Graph Embedding-Based Augmentation for Tabular Data

To improve the performance of ML models, we leverage KGs to enrich tabular datasets with semantic information.
This section outlines the two core steps of our approach. First, in Section 4.1, we explain the construction of KGs
using instances from the tabular data, as shown in the top part of Figure 2. This step focuses on building KGs
that capture deeper relationships within the data. Next, in Section 4.2, we focus on integrating KG embeddings
into the ML pipeline. This includes various augmentation strategies designed to enhance model performance by
incorporating structural and relational information from the KG into the training data, as depicted in the bottom part
of Figure 2.

4.1. Knowledge Graph Construction

For our approach to enrich ML input data with supplementary knowledge, constructing KGs is essential. They
serve as structured representations of domain knowledge, capturing the semantics of the data and allowing for the
integration of ontological information into datasets. This enrichment allows ML models to leverage contextual and
relational information, enhancing their predictive capabilities. The upper part of Figure 2 illustrates the methodology
used for building these KGs, which represent data that was initially captured in tabular form. The following steps
provide a formal description of this construction process.

Step 1: Ontology Definition The first step in constructing the KG is defining an ontology, which is used to capture
domain semantics and provide a structured framework for enriching the datasets. There are different ways to develop
an ontology, represented as O = (C,R,HC). We considered (i) creating a new ontology from scratch, (ii) extend-
ing and reusing existing ontologies to include additional domain-specific information, or (iii) extracting relevant
components from a more extensive ontology (see Section 6.2).
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Fig. 2. Overview of the proposed approach including (i) KG construction (top) and (ii) knowledge injection into data (bottom) (adapted from
[35] following the boxology notation [50]).

Step 2: Mapping Definition The process of mapping dataset features to the concepts in the ontology is crucial for
using instances from tabular data to populate the ontology and, consequently, construct a KG. A key aspect of this
mapping process is the mapping function ψ : F → C, where F = { f1, f2, . . . , fn} represents the features within
the tabular dataset T , defined as a matrix of dimensions m × n. This function entails the manual mapping of each
feature fi with a corresponding concept C in the ontology O.

Step 3: Knowledge Graph Population The knowledge graph KG is constructed by utilizing the ontology O along
with the instances from the tabular data T and applying the mapping function ψ : F → C. This process is automated
through a Python script. We define the KG as KG = (E,R′, L,Tr) where:

– E signifies the set of entities, with each entity ei ∈ E corresponding to an instance in the tabular data derived
from each row mi in T ,

– R′ represents the set of instantiated relations within the KG, which includes relations from R through the
mapping ψ, and illustrates direct relationships between entities E or between an entity and a literal value,

– L represents the set of literals, which are attribute values associated with entities, such as numerical data (e.g.,
30) from T ,

– Tr consists of triples generated for each feature value in an instance row mi, following the mapping ψ. For
instance, if a feature fglucoseLevel corresponds to an instance ei with a blood pressure value of 95, the associated
triple would be (ei, rhasGlucoseLevel, 95), indicating the relationship rhasGlucoseLevel between entity ei and the literal
value 95.

This preprocessing phase ensures that features from the tabular data T are semantically represented within the
Knowledge Graph KG using the defined ontology O.

4.2. Integrating KG Embeddings into ML Pipeline

In Section 4.1, we outlined the construction of enriched data structures that capture deeper semantics beyond the
raw data. This section will now focus on transforming these enriched structures into a vectorized format suitable for
ML, and on the optimal strategies for augmenting the input data, as illustrated in the lower part of Figure 2.
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Step 4: Knowledge Graph Embedding Generation With the populated KG with enriched data structures, the sub-
sequent step is to prepare the KG for ML model training. This requires transforming the KG into a vector space
representation suitable for ML models, using knowledge graph embedding (KGE) algorithms. Having a knowledge
graph KG = (E,R), the goal of the embedding algorithm is to map entities E and relations R into a continuous
vector space. Formally, this can be represented as function: ϕ : E ∪ R → Rd, where ϕ is the embedding function
that maps each entity and relation in the KG to a d -dimensional real-valued vector in the vector space Rd. This
transformation allows the KG to be represented in a way that preserves its semantic information while being com-
putationally efficient. In the next steps 5 & 6 we will see how these embeddings are used as such or to compute
features that are added to augment the dataset for a better ML performance.

Step 5 & 6: Tabular Data Enrichment and ML Model Training After computing KGEs, our objective is to explore
the integration of these embeddings to enhance the performance of ML models. We experimented with different
approaches for augmenting the training set using KGEs. First, we established a baseline that trains ML models
using only tabular data T , following the traditional approach, shown in Figure 1, where no KG information is being
added. Then we experimented with different ways for enhancing the dataset with KGEs and training the ML models,
which are shown in details in the following section.

5. Proposed Approaches for Tabular Data Enrichment and ML Model Training

In this section, we outline the eight distinct approaches we explored for integrating KG embeddings into the
training dataset, each designed to evaluate the impact of enriched semantic information on model performance. 2

5.1. Embeddings as ML Model Inputs (EmbedOnly)

We begin by our initial objective to investigate whether training a model on the vector representations generated
from these KGs, using various embedding algorithms, could reveal underlying patterns and relationships within the
data. Therefore, we define our first sub-hypothesis as follows.

H1.1: Using the embeddings alone, without any additional tabular data, could provide meaningful insights
and capture latent relationships that enhance the model’s predictive capability.

To explore this, we first explored the EmbedOnly approach, focusing solely on the embeddings to assess their
standalone effectiveness in capturing meaningful insights as shown in Figure 3.

Fig. 3. Embedding vectors, highlighted in yellow, serve as inputs to the ML model.

For each instance pi in the tabular data T , we have them represented as a subset P ⊆ E of KG, where P represents
the set of entities corresponding to instances in the tabular data. The embedding function: ϕ : P ∪ R → Rd is used
to map each instance entity pi ∈ P to a d-dimensional vector space. Consequently, during both the training and
testing phases only the embeddings {ϕ(p) | p ∈ P} ⊂ Rd derived from the instance entities are used, as outlined in
Algorithm 1. This ensures that the model is trained and evaluated only on the vector representations, capturing the
semantic relationships within the KG relevant to the instances.

2A visual representation of these approaches, following the Boxology notation [50], is available as supplementary material at:
https://semsys.ai.wu.ac.at/data-augmentation/home.html.

https://semsys.ai.wu.ac.at/data-augmentation/home.html
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Algorithm 1 EmbedOnly

Require: Knowledge Graph KG = (E,R), Tabular Data T , Embedding Function ϕ : E ∪ R→ Rd, ML Model M
Ensure: Trained ML model using only embeddings for n splits

1: Initialize training data Xtrain = [], labels Ytrain = []
2: Initialize test data Xtest = [], labels Ytest = []
3: for each instance pi in the training set Ttrain do
4: vi ← ϕ(pi) ▷ Map entities to embeddings
5: Append vi to Xtrain
6: Append label yi corresponding to pi to Ytrain
7: end for
8: for each instance pi in the test set Ttest do
9: vi ← ϕ(pi) ▷ Map entities (without yi) to embeddings

10: Append vi to Xtest
11: Append label yi corresponding to pi to Ytest
12: end for
13: Train ML model M using Xtrain and Ytrain
14: Evaluate M on Xtest and Ytest
15: return Trained model M

5.2. Combining Embeddings with Tabular Data Features (EmbedAugTab)

Building upon EmbedOnly approach, we define our second sub-hypothesis as follows.

H1.2: Combining the KG-derived embeddings with traditional tabular data might enhance model performance
by introducing additional relational information from the KG structure.

This led us to design approaches that integrate both embeddings and tabular features, aiming to see if the KG

information could complement and enrich the existing dataset. Thus, we investigated EmbedAugTab and other

subsequent approaches that leverage embeddings for data augmentation based on this intuition.

EmbedAugTab approach involves training ML algorithms on datasets that integrate the original tabular data with

additional columns derived from embeddings, as illustrated in Figure 4 and presented in Algorithm 2. For each

instance p in the tabular dataset T , we augment T by appending the embedding vector ϕ(p), corresponding to the

instance p ∈ P. The embedding vector ϕ(p) is generated using the embedding function ϕ : P ∪ R → Rd. This

process yields an augmented tabular matrix T ′ with dimensions m× (n+ d), where each row i contains the original

features from T concatenated with the d-dimensional embedding vector ϕ(p). The resulting augmented matrix T ′ is

then utilized to train ML models, leveraging both the original tabular features and the vector representations of the

instances. In the healthcare domain, each instance p represents a patient, and the embedding vectors are added for

each patient, in order to improve the models’ ability to predict the presence or absence of specific diseases, such as

heart disease or chronic kidney disease.
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Fig. 4. Tabular dataset enrichment with embedding vectors, highlighted in yellow, used as inputs for the ML model.

Algorithm 2 EmbedAugTab

Require: Knowledge Graph KG = (E,R), Tabular Data T , Embedding Function ϕ : E ∪ R→ Rd, ML Model M
Ensure: Trained ML model M for each Ttrain, Ttest of n splits

1: Initialize training data Xtrain = [], labels Ytrain = []
2: Initialize test data Xtest = [], labels Ytest = []
3: for each instance pi in Ttrain do
4: vi ← ϕ(pi) ▷ Compute embedding vector for instance pi

5: Xtrain ← Xtrain ∪ Concatenate(pi, vi) ▷ Append original features and embedding
6: end for
7: for each instance pi in Ttest do
8: vi ← ϕ(pi) ▷ Compute embedding vector for instance pi

9: Xtest ← Xtest ∪ Concatenate(pi, vi) ▷ Append original features and embedding
10: end for
11: Train ML model M using Xtrain and Ytrain
12: Evaluate M on Xtest and Ytest
13: return Trained model M

5.3. Tabular Dataset Enrichment with Distance Measures from Knowledge Graphs (DistAugTab)

Utilizing embedding vectors directly to augment the tabular data may introduce noise. Thus, our sub-hypothesis
is defined as follows.

H1.3: Extracting specific structural information from the embedding space, such as distance matrices or clus-
ter characteristics, might enhance model performance by providing more interpretable features for distance-
based models.

This led us to introduce the DistAugTab and ClustAugTab approaches, which aim to selectively extract meaning-
ful information from the embeddings to improve the learning process.

In DistAugTab approach, we enhance the tabular dataset T by incorporating additional features derived from
embedding-based distance calculations, as illustrated in Figure 5 and presented in Algorithm 3. For each instance
pi in the dataset T , we compute its embedding vector v⃗i using the embedding function ϕ. To further enrich the
representation of each instance, we introduce |C| additional columns, where C denotes the set of target classes.

The new columns are calculated by determining the Euclidean distance between the embedding vector v⃗i of
instance pi and the centroid c⃗C j of each target class C j ∈ C. The centroid c⃗C j is calculated as the mean of the
embedding vectors v⃗i for all instances pi belonging to the target class C j. These distance-based features are added to
the augmented dataset T ′, resulting in an expanded dataset with dimensions m× (n + |C|), where m is the number
of instances and n is the original number of features.

By including these distance features, we aim to capture how closely each instance’s embedding aligns with
the class centroids, thereby potentially improving the model’s ability to differentiate between target classes. For
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Fig. 5. Tabular dataset enrichment with distance measures from the KG (highlighted in yellow), used as inputs for the ML model.

example, in the healthcare domain, the target classes could represent the presence or absence of a disease C =

{disease, noDisease}, where the distance features’s aim is to help refine the model’s predictions based on proximity
to the centroids of the disease and noDisease classes.

Algorithm 3 DistAugTab

Require: Knowledge Graph KG = (E,R), Tabular Data T , Target Classes C, Embedding Function ϕ : E∪R→ Rd,
ML Model M

Ensure: Trained ML model M for each Ttest, Ttest of n splits
1: Initialize training data Xtrain = [], labels Ytrain = []
2: Initialize test data Xtest = [], labels Ytest = []
3: for each instance pi in Ttrain do
4: vi ← ϕ(pi) ▷ Compute embedding vector for instance pi

5: for each class C j ∈ C do
6: di, j ← ∥v⃗i − c⃗C j∥2 ▷ Compute Euclidean distance between pi and class centroid C j

7: end for
8: Xtrain ← Xtrain ∪ Concatenate(pi, di,1, . . . , di,|C|) ▷ Append original features and distances
9: end for

10: for each instance pi in Ttest do
11: vi ← ϕ(pi) ▷ Compute embedding vector for instance pi

12: for each class C j ∈ C do
13: di, j ← ∥v⃗i − c⃗C j∥2 ▷ Compute Euclidean distance between pi and class centroid C j

14: end for
15: Xtest ← Xtest ∪ Concatenate(pi, di,1, . . . , di,|C|) ▷ Append original features and distances
16: end for
17: Train ML model M using Xtrain and Ytrain
18: Evaluate M on Xtest and Ytest
19: return Trained model M

5.4. Embedding and Distance Features Augmented Tabular Data (EmbedDistTabAug)

This approach augments the tabular dataset by incorporating both embedding vectors and distance-based features,
as depicted in Figure 6 and presented in Algorithm 4. For each instance pi, the augmented dataset T ′ is expanded
by adding d + |C| new columns, where d represents the embedding dimension and |C| denotes the number of target
classes. This results in an enhanced dataset with dimensions m × (n + d + |C|), combining the original features,
embedding vectors, and distances to class centroids.
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Fig. 6. Tabular dataset enrichment with distance measures from the KG and vector embeddings, highlighted in yellow, used as inputs for the ML
model.

Algorithm 4 EmbedDistTabAug

Require: Knowledge Graph KG = (E,R), Tabular Data T , Target Classes C, Embedding Function ϕ : E∪R→ Rd,
ML Model M

Ensure: Trained ML model M for each Ttest, Ttest of n splits
1: Initialize training data Xtrain = [], labels Ytrain = []
2: Initialize test data Xtest = [], labels Ytest = []
3: for each instance pi in Ttrain do
4: vi ← ϕ(pi) ▷ Compute embedding vector for instance pi

5: for each class C j ∈ C do
6: di, j ← ∥v⃗i − c⃗C j∥2 ▷ Compute Euclidean distance between pi and class centroid C j

7: end for
8: Xtrain ← Xtrain ∪ Concatenate(pi, vi, di,1, . . . , di,|C|) ▷ Append original features, embedding, and distances
9: end for

10: for each instance pi in Ttest do
11: vi ← ϕ(pi) ▷ Compute embedding vector for instance pi

12: for each class C j ∈ C do
13: di, j ← ∥v⃗i − c⃗C j∥2 ▷ Compute Euclidean distance between pi and class centroid C j

14: end for
15: Xtest ← Xtest ∪ Concatenate(pi, vi, di,1, . . . , di,|C|) ▷ Append original features, embedding, and distances
16: end for
17: Train ML model M using Xtrain and Ytrain
18: Evaluate M on Xtest and Ytest
19: return Trained model M

5.5. Tabular Dataset Enrichment with Embedding Clusters’ membership (ClusterAugTab)

In this approach, referred to as ClusterAugTab, we augment the tabular dataset by first computing embeddings for
the data Etrain = {ϕ(pi)|pi ∈ Ttrain}, where ϕ : E ∪ R → Rd, and then clustering these embeddings into n clusters
using the K-means algorithm, as shown in Figure 7 and presented in Algorithm 5. Each instance pi ∈ T is assigned
a cluster membership based on its embedding, which is added as an additional feature to the dataset. The augmented
dataset T ′ now has dimensions m× (n + 1), where the original n features are extended by one column representing
the cluster membership derived from the embeddings. This enhanced dataset is then used to train the ML model,
with the added cluster-level information facilitating the grouping of similar instances. By capturing these underlying
patterns in the embeddings, the model can achieve improved predictive performance.
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Fig. 7. Tabular dataset enrichment with embedding clusters’ membership (highlighted in yellow), used as ML model inputs.

Algorithm 5 ClusterAugTab

Require: Tabular Data T , Number of Clusters n, K-means Clustering Algorithm, ML Model M
Ensure: Trained ML model M for each Ttest, Ttest of n splits

1: Initialize training data Xtrain = [], labels Ytrain = []
2: Initialize test data Xtest = [], labels Ytest = []
3: Compute embeddings for Ttrain: Etrain = {ϕ(pi)|pi ∈ Ttrain}
4: Initialize K-means with n clusters
5: Fit K-means on Etrain to obtain cluster memberships
6: for each instance pi in Ttrain do
7: vi ← ϕ(pi) ▷ Compute embedding vector for instance pi

8: ci ← K-means cluster for vi ▷ Assign cluster membership based on embedding vi

9: Xtrain ← Xtrain ∪ Concatenate(pi, ci) ▷ Append original features and cluster membership
10: end for
11: for each instance pi in Ttest do
12: vi ← ϕ(pi) ▷ Compute embedding vector for instance pi

13: ci ← K-means cluster for vi ▷ Assign cluster membership based on embedding vi

14: Xtest ← Xtest ∪ Concatenate(pi, ci) ▷ Append original features and cluster membership
15: end for
16: Train ML model M using Xtrain and Ytrain
17: Evaluate M on Xtest and Ytest
18: return Trained model M

5.6. Tabular Dataset Enrichment with Embeddings and Embedding Clusters’ membership (EmbedClusterAugTab)

This approach, the tabular dataset is augmented by integrating both embedding vectors and cluster memberships,

as shown in Figure 8 and detailed in Algorithm 6. For each instance pi, the augmented dataset T ′ is expanded by

appending both the d-dimensional embedding vector and the corresponding cluster membership, where d represents

the embedding dimension. The resulting dataset has dimensions m× (n + d + 1), combining the original features,

the learned embeddings, and the cluster assignments derived from the embeddings. This enriched representation

enables the model to leverage both latent structure and group similarity for improved predictive performance.
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Fig. 8. Tabular dataset enrichment with embedding clusters’ membership and vector embeddings, highlighted in yellow, used as ML model
inputs.

Algorithm 6 EmbedClusterAugTab

Require: Tabular Data T , Number of Clusters n, K-means Clustering Algorithm, ML Model M
Ensure: Trained ML model M for each Ttest, Ttest of n splits

1: Initialize training data Xtrain = [], labels Ytrain = []
2: Initialize test data Xtest = [], labels Ytest = []
3: Compute embeddings for Ttrain: Etrain = {ϕ(pi)|pi ∈ Ttrain}
4: Initialize K-means with n clusters
5: Fit K-means on Etrain to obtain cluster memberships
6: for each instance pi in Ttrain do
7: vi ← ϕ(pi) ▷ Compute embedding vector for instance pi

8: ci ← K-means cluster for vi ▷ Assign cluster membership based on embedding vi

9: Xtrain ← Xtrain ∪ Concatenate(pi, vi, ci) ▷ Append original features, embeddings and cluster membership
10: end for
11: for each instance pi in Ttest do
12: vi ← ϕ(pi) ▷ Compute embedding vector for instance pi

13: ci ← K-means cluster for vi ▷ Assign cluster membership based on embedding vi

14: Xtest ← Xtest ∪ Concatenate(pi, vi, ci) ▷ Append original features, embeddings and cluster membership
15: end for
16: Train ML model M using Xtrain and Ytrain
17: Evaluate M on Xtest and Ytest
18: return Trained model M

5.7. Tabular Dataset Enrichment with Feature Interaction (InteraAugTab)

To further optimize the integration of KG information, we hypothesized that interactions between embeddings
and existing features could reveal complex patterns. We define the sub-hypothesis as follows.

H1.4: Some classes may only be distinguishable through the combined effects of KG embeddings and tabular
data.

By developing approaches that compute these interaction terms, we aimed to enrich the feature space, enabling
the model to capture dependencies arising from the integration of KG-derived and tabular features. This approach,
implemented in the InteraAugTab approach, offers a multi-dimensional perspective that aims to improve accuracy
and F2 score.

InteraAugTab approach augments the tabular dataset by incorporating interaction terms derived from the original
features, as illustrated in Figure 9 and presented in Algorithm 7. For each instance pi, the embedding vector vi is
computed using an embedding function ϕ. Interaction terms are then generated by element-wise multiplying each
feature in pi with each component of the embedding vector vi. The augmented dataset T ′ thus contains the original
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features and the interaction terms. This results in an enhanced dataset with dimensions m × (n + (n × d)), where
n is the number of original features and d is the embedding dimension. The interaction terms enable the model to
capture complex relationships between the original features and the latent information in the embeddings, potentially
leading to improved predictive performance.

Fig. 9. Tabular dataset enrichment with feature interaction (highlighted in yellow), used as ML model inputs.

Algorithm 7 Feature Interaction Augmented Tabular Data (InteraAugTab)

Require: Tabular Data T , ML Model M
Ensure: Trained ML model M for each Ttest, Ttest of n splits

1: Initialize training data Xtrain = [], labels Ytrain = []
2: Initialize test data Xtest = [], labels Ytest = []
3: for each instance pi in Ttrain do
4: vi ← ϕ(pi) ▷ Compute embedding vector for instance pi

5: Xint ← Compute interaction terms between original features and embedding vi

6: Xtrain ← Xtrain ∪ Concatenate(pi, Xint) ▷ Append original features, and interaction terms
7: end for
8: for each instance pi in Ttest do
9: vi ← ϕ(pi) ▷ Compute embedding vector for instance pi

10: Xint ← Compute interaction terms between original features and embedding vi

11: Xtest ← Xtest ∪ Concatenate(pi, Xint) ▷ Append original features and interaction terms
12: end for
13: Train ML model M using Xtrain and Ytrain
14: Evaluate M on Xtest and Ytest
15: return Trained model M

5.8. Tabular Dataset Enrichment with Embedding and Feature Interaction (EmbedInteraAugTab)

In this approach, referred to as EmbedInteractionAugTab, we augment the tabular dataset by incorporating both
the embedding vectors and the interaction terms between the original features and the embedding vectors, as shown
in Figure 10 and presented in Algorithm 8. Similar to InteraAugTab approach, the embeddings are computed and
the interaction terms. The augmented dataset T ′ thus contains the original features, the embedding vectors, and the
interaction terms resulting in dimensions m× (n+ d + (n× d)), where n is the number of original features and d is
the embedding dimension.
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Fig. 10. Tabular dataset enrichment with feature interaction and vector embeddings, highlighted in yellow, used as ML model inputs.

Algorithm 8 EmbedInteractionAugTab

Require: Tabular Data T , Embedding Function ϕ : E ∪ R→ Rd, ML Model M
Ensure: Trained ML model M for each Ttest, Ttest of n splits

1: Initialize training data Xtrain = [], labels Ytrain = []
2: Initialize test data Xtest = [], labels Ytest = []
3: for each instance pi in Ttrain do
4: vi ← ϕ(pi) ▷ Compute embedding vector for instance pi

5: Xint ← Compute interaction terms between original features and embedding vi

6: Xtrain ← Xtrain ∪ Concatenate(pi, vi, Xint) ▷ Append original features, embedding, and interaction terms
7: end for
8: for each instance pi in Ttest do
9: vi ← ϕ(pi) ▷ Compute embedding vector for instance pi

10: Xint ← Compute interaction terms between original features and embedding vi

11: Xtest ← Xtest ∪ Concatenate(pi, vi, Xint) ▷ Append original features, embedding, and interaction terms
12: end for
13: Train ML model M using Xtrain and Ytrain
14: Evaluate M on Xtest and Ytest
15: return Trained model M

To address the risk of high dimensionality, which can adversely affect the performance of certain models, we
implemented a dimensionality reduction step using the PCA algorithm [1]. This reduction was specifically applied
to approaches integrating embeddings, namely EmbedOnlyRed, EmbedAugTabRed, and EmbedDistAugTabRed.
We define our sub-hypothesis as follows:

H1.5: Reducing the dimensionality of the embedding-augmented datasets will improve model performance by
eliminating redundant or noisy features, thereby retaining only the most informative ones.

6. Experimental Analysis

In this section, we discuss the experimental goals that guide our investigation in Section 6.1 and in section 6.2 we
discuss the experimental setup and materials used to achieve these goals.

6.1. Experimental Goals

The goal of our experimental evaluation is to investigate the use of KGs through knowledge graph embeddings
to enhance the predictive performance of ML methods. We leverage the semantic structure of the ontologies, to
represent the instances with more semantics and then through our proposed approaches use these to augment the
tabular dataset for a better ML performance. The specific goals of our experiments are as follows:
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Table 2
Details of the ontologies for heart and kidney disease domain.

Domain Ontologies Classes Object prop. Data prop.

Heart
Small 29 6 10

Extended 1664 6 10
Snomed 80 24 10

Kidney Snomed 113 27 21

Optimal Integration of KGs into ML Pipelines (RQ1): We examine effective methods for incorporating KGs into
ML pipelines to improve model performance, with a particular emphasis on accuracy and F2 score. This entails
analyzing the integration strategies that can enhance the predictive power of ML models.

Influence of KG Embedding Techniques (RQ2): We seek to understand how different KG embedding algorithms
affect performance outcomes in ML models when utilized to enrich tabular data. This exploration focuses on iden-
tifying which embedding techniques yield the best enhancements in model accuracy and F2 score.

Comparative Analysis of ML Algorithms with KG-Enhanced Data (RQ3): We assess the relative performance of
various ML algorithms when supplemented with KG-derived information. This analysis will highlight how distinct
algorithms exploit KG semantics to boost the predictive performance.

6.2. Experiment Setup

Datasets. In our experiments, we used two publicly available datasets from Kaggle: the Heart Disease3 and
Chronic Kidney Disease4 datasets. Both datasets are used for binary classification tasks, where the goal is to predict
the presence (disease) or absence (no disease) of the disease.

– Heart disease dataset consists of 303 instances, with 14 features capturing various patient health indicators
relevant to diagnosing heart disease such as heart rate and cholesterol.

– Chronic kidney disease contains 400 instances and 25 features, capturing various health metrics related to
chronic kidney disease such as blood pressure and albumin levels.

Both datasets contain a mix of categorical and numerical attributes, making them suitable for testing the integra-
tion of KGE with tabular data. Additional details about the datasets’ features can be found in Appendix A.

Ontologies. For the heart disease, we used three different ontologies:

– The Small ontology, denoted as O = (C,R,HC), is a handcrafted model derived from Trepan Reloaded [10]
that encapsulates the features found in the Heart Disease dataset.

– The Extended ontology, represented as O = (C′,R′,HC), is an extension of an existing ontology 5 O =
(C,R,HC) which incorporates additional features from the dataset.

– The Snomed ontology is derived as sub-ontology from the SNOMED-CT ontology 6. This ontology was con-
structed using the methodology proposed by Chen et al. [7], which focuses on extracting relevant ontological
structures from SNOMED-CT based on a predefined set of seed concepts required in the output. Initially,
we selected the relevant concepts in the SNOMED-CT browser 7 that align with the dataset’s features. These
concepts served as seed concepts in the extraction process, ensuring the resulting ontology included them.

For chronic kidney disease, we only used the third approach, extracting a sub-ontology from SNOMED-CT, due
to the lack of ontologies specific to this domain. An overview of the ontologies used for both domains, including
the count of classes and properties, is presented in Table 2.

3https://www.kaggle.com/datasets/johnsmith88/heart-disease-dataset
4https://www.kaggle.com/datasets/mansoordaku/ckdisease
5https://bioportal.bioontology.org/ontologies/HFO
6https://www.snomed.org
7https://termbrowser.nhs.ukmar
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Table 3
Parameters for different KGE methods for different KGs.

Domain KG Node2Vec Param. RDF2Vec Param. TransH & DistMult
dimens. walk length walks window depth walks/node window params

Heart
Small [64,128,100] 40 200 5 4 100 5 default

Extended [64,128,100] 60 200 10 6 150 10 default
Snomed [64,128,100] 50 200 7 5 100 7 default

Kidney Snomed [64,128,100] 50 200 7 10 100 7 default

Table 4
Parameter grid for ML methods.

Method Parameter (Grid) Values
KNN n_neighbors [20, 25, 30, 35, 40]
SVM C; kernel; probability [0.9, 1.0, 1.1, 1.2]; rbf; True
XGB learning_rate [0.08, 0.09, 0.1, 0.11]

NN
layers; activation;

loss; optimizer
[32, 16, 1]; [relu, relu, sigmoid];

binary crossentropy; adam

KG embedding methods. We used four embedding methods: Node2Vec, RDF2vec, DistMult and TransH. The
first two methods were selected as random-walk based models in the embedding landscape, while DistMult and
TransH were chosen based on the findings in the Sem@K paper [25], which identified them as outperforming
models from the semantic matching and geometric model families, respectively. An overview of these models is
provided in Section 2.

In Table 3, we illustrate the parameters used for the embedding methods, tailored to the specific characteristics
of the KGs. The embedding dimensions ([64, 128, 100]) were selected to provide a range of vector sizes that are
large enough to capture meaningful patterns but small enough to maintain computational efficiency. For Node2Vec
and RDF2Vec, the walk length and the number of walks per node were adapted to the size and complexity of
each ontology. For smaller ontologies, shorter walks and fewer iterations, while larger or more complex ontologies
required slightly longer walks. We averaged performance across three embedding dimensions to provide a more
robust evaluation of each method and also computed the standard deviation to capture variability across runs.

ML models. In our experiments, we used four models: K-Nearest Neighbors (KNN), Support Vector Machine
(SVM), Extreme Gradient Boosting (XGB), and a simple feedforward Neural Network (NN). KNN and SVM were
chosen because they are distance-based, aligning with our hypothesis that KGEs, which are also distance-based,
would enhance their performance. Whereas, XGB and NN were included to test the effect of KGEs on more com-
plex, non-distance-based models.

To ensure robust evaluation, we used stratified 5-fold cross-validation, maintaining the same class distribution
in each fold. For reproducibility, a fixed random seed was applied throughout the experiments. We initially exper-
imented with a wide range of hyperparameters and, to reduce computational cost, we narrowed the range to focus
on the best-performing configurations, as shown in Table 4. Results were averaged to ensure consistency across
different configurations.

Evaluation metrics. In our experiments, we computed both accuracy and F2 score to assess model performance.
We selected the F2 score as a key metric due to its relevance in disease prediction tasks, where maximizing true
positive cases is critical for effectively identifying patients with the disease.

7. Results

In this section are shown the experiment results based on the experiment setup that we discussed in Section 6.2,
starting with heart disease prediction, followed by kidney disease prediction. We show the concluding results for
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each research question.

7.1. Heart Disease Prediction

Table 5 shows the average accuracy and F2 scores, along with the standard deviation across different vector
sizes of the embeddings, for four different ML models (KNN, NN, SVM, XGB). The results include the models’
baseline performance on tabular data alone, compared with their performance when the data is augmented using
embeddings generated by four KG embedding algorithms (Node2Vec, RDF2Vec, DistMult, TransH). Additional
results, including average recall with standard deviation across vector sizes, evaluated using different knowledge
graphs, models, approaches and embedding methods, are provided in Table 11 in Appendix B. In the following, the
results are analyzed based on the research questions.

Investigating the impact of various methods for data augmentation through KGE The different methods of aug-
menting tabular data with KG embeddings yield mixed results across models. Approaches such as EmbedAugTab,
DistAugTab and EmbedDistAugTab often provide the most performance improvements, especially for models such
as XGBoost and NN. For example, DistAugTab when Node2Vec is being used to generate the embeddings signifi-
cantly improved the F2 score of XGB from 75.19 (baseline) to 90.85, highlighting the ability of XGB to effectively
use the additional distance features from KG embeddings.

Conversely, SVM and KNN tend to struggle with complex augmentation methods, showing lower gains and even
losses in some cases, as they are less suited to high-dimensional data and the resulting feature complexity.

In the following we consider the effectiveness of different approaches based on the sub-hypotheses H1.1 to H1.5.
H1.1 Analysis: Our initial hypothesis (H1.1) proposed that using KG-derived embeddings alone (EmbedOnly)

could provide meaningful insights by capturing latent relationships within the data. However, the results across
all models and embedding algorithms contradict this hypothesis. The EmbedOnly approach consistently under-
performed the baseline for each ML model, regardless of the KG embedding method used. For example, with
Node2Vec, the F2 score of SVM dropped significantly from 77.18 (baseline) to 48.31, and similar trends were ob-
served for other models and embeddings. Even when dimensionality reduction (EmbedOnlyRed) was applied to the
embeddings, the results remained poor. This suggests that the standalone embeddings lack the richness of informa-
tion provided by the original tabular features, which include more direct indicators of patient characteristics and
clinical factors. Additionally, using embeddings alone may introduce complexity without clear connections to the
target variable, making it difficult for the models to extract useful patterns.

H1.2 Analysis: Our second hypothesis (H1.2) proposed that combining the KG embeddings with traditional
tabular data (EmbedAugTab) would enhance predictive performance by adding relational information from the KG
structure. This approach showed mixed results. In some cases, it led to modest improvements, such as with NN using
RDF2Vec to generate the embeddings (F2 score improved from 77.44 to 78.64) or KNN with Node2Vec and Dist-
Mult. For SVM, there were F2 score gains when using any embedding algorithm and EmbedAugTabRed compared
to the baseline, suggesting that the additional KG information could help refine decision boundaries for SVM’s
kernel-based approach. However, XGBoost often underperformed when embeddings were added (EmbedAugTab),
with scores generally below the baseline. This could be due to XGBoost’s preference for a simpler feature space
where tabular data alone provides more direct information, making the additional, less structured KG-derived fea-
tures more of a drawback than a help.

H1.3 Analysis: To address potential noise from directly using embeddings, H1.3 suggested that extracting specific
structural features, such as distances from class centroids (DistAugTab) or clustering characteristics (ClustAugTab),
would yield better results. The performance of DistAugTab, especially using Node2Vec to generate embeddings,
supports this hypothesis, showing significant improvements over the baseline across NN, SVM, and XGBoost mod-
els. For instance, using Node2Vec to generate embeddings and then using DistAugTab approach for data augmen-
tation boosted the F2 score of NN from 77.44% to 78.78% and XGBoost from 75.19% to 90.85%, indicating that
distance-based features may help capture nuanced relationships between instances and classes that are relevant
for classification. NN and SVM also performend well using DistMult and TransH for embedding generation and
DistAugTab approach, likely because these models can benefit from the distance measures, making it easier to
distinguish between similar instances.
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Table 5
Average accuracy and F2 scores (with standard deviation across different vector sizes), across different knowledge graphs, for various models,
approaches, and embedding methods in heart disease prediction.

KNN NN SVM XGBoost
Methods Acc. F2 Acc. F2 Acc. F2 Acc. F2
Baseline 81.02 71.33 81.77 77.44 79.75 77.18 79.32 75.19

Node2Vec

EmbedOnly 49.36 ± 2.55 47.10 ± 3.97 49.03 ± 3.26 50.71 ± 3.27 48.31 ± 4.33 48.79 ± 2.42 48.61 ± 1.52 47.50 ± 3.72

EmbedOnlyRed 49.36 ± 2.55 47.10 ± 3.97 49.00 ± 3.59 50.48 ± 2.29 48.19 ± 4.09 48.52 ± 2.21 48.93 ± 2.38 50.90 ± 4.82

EmbedAugTab 81.27 ± 0.21 71.43 ± 0.48 78.15 ± 1.27 76.08 ± 1.58 80.59 ± 0.27 78.07 ± 0.54 64.94 ± 1.29 64.56 ± 4.35

EmbedAugTabRed 80.60 ± 0.13 70.63 ± 0.27 81.02 ± 0.83 76.93 ± 1.13 79.34 ± 0.11 77.53 ± 0.18 79.72 ± 0.49 75.24 ± 0.81

DistAugTab 81.17 ± 0.12 71.54 ± 0.18 82.17 ± 0.50 78.78 ± 1.09 81.81 ± 0.09 78.36 ± 0.02 92.51 ± 2.14 90.85 ± 3.96

EmbedDistAugTab 81.43 ± 0.28 71.70 ± 0.55 77.71 ± 1.53 76.10 ± 1.83 81.67 ± 0.32 78.57 ± 0.25 91.82 ± 3.11 89.27 ± 5.73

EmbedDistAugTabRed 80.66 ± 0.20 70.76 ± 0.33 80.06 ± 0.55 75.74 ± 1.33 79.46 ± 0.20 77.71 ± 0.30 79.32 ± 0.35 75.15 ± 0.59

EmbedClustAugTab 81.17 ± 0.72 70.97 ± 1.49 72.43 ± 0.89 72.96 ± 3.61 76.10 ± 0.56 75.01 ± 2.00 55.32 ± 2.25 57.39 ± 4.94

EmbedInteraAugTab 79.07 ± 0.82 65.56 ± 1.82 75.95 ± 1.28 75.70 ± 1.90 80.12 ± 0.28 76.95 ± 1.15 69.22 ± 1.89 68.40 ± 3.69

ClustAugTab 81.21 ± 0.64 71.16 ± 1.43 78.01 ± 0.10 76.03 ± 1.14 77.58 ± 0.41 76.02 ± 0.69 62.93 ± 0.73 65.05 ± 3.99

InteraAugTab 79.06 ± 0.68 65.55 ± 1.49 78.81 ± 1.34 76.77 ± 0.41 80.11 ± 0.70 77.00 ± 1.10 74.18 ± 1.71 72.90 ± 2.57

RDF2Vec

EmbedOnly 52.04 ± 0.69 31.42 ± 4.68 53.04 ± 1.28 22.06 ± 9.23 51.27 ± 0.92 40.14 ± 3.48 50.65 ± 1.72 43.41 ± 2.18

EmbedOnlyRed 52.04 ± 0.69 31.42 ± 4.68 53.34 ± 1.10 21.84 ± 9.30 51.27 ± 0.92 40.16 ± 3.44 51.00 ± 1.21 43.18 ± 1.71

EmbedAugTab 81.02 ± 0.00 71.33 ± 0.00 82.07 ± 0.29 78.64 ± 0.42 79.75 ± 0.00 77.18 ± 0.00 78.56 ± 0.54 75.30 ± 1.34

EmbedAugTabRed 79.95 ± 0.00 69.59 ± 0.00 80.32 ± 0.58 76.06 ± 0.90 79.32 ± 0.00 77.63 ± 0.00 78.77 ± 0.19 75.25 ± 0.16

DistAugTab 81.02 ± 0.00 71.33 ± 0.00 81.96 ± 0.58 78.57 ± 0.98 79.75 ± 0.00 77.18 ± 0.00 84.38 ± 1.59 81.62 ± 2.24

EmbedDistAugTab 81.02 ± 0.00 71.33 ± 0.00 81.85 ± 0.10 78.46 ± 0.58 79.75 ± 0.00 77.18 ± 0.00 80.60 ± 0.82 77.20 ± 0.82

EmbedDistAugTabRed 79.95 ± 0.00 69.59 ± 0.00 80.49 ± 0.77 76.45 ± 0.90 79.32 ± 0.00 77.63 ± 0.00 78.77 ± 0.19 75.25 ± 0.16

EmbedClustAugTab 81.18 ± 0.11 71.12 ± 0.17 81.44 ± 0.63 77.48 ± 0.67 80.16 ± 0.08 77.36 ± 0.28 78.64 ± 0.40 75.34 ± 0.80

EmbedInteraAugTab 81.02 ± 0.00 71.33 ± 0.00 81.81 ± 0.28 78.43 ± 0.79 79.76 ± 0.02 77.18 ± 0.01 79.33 ± 1.04 76.03 ± 0.75

ClustAugTab 81.18 ± 0.11 71.12 ± 0.17 81.81 ± 0.70 78.38 ± 1.11 80.16 ± 0.08 77.36 ± 0.28 79.10 ± 0.35 75.22 ± 0.42

InteraAugTab 81.02 ± 0.00 71.33 ± 0.00 82.25 ± 0.39 78.59 ± 0.51 79.75 ± 0.00 77.18 ± 0.00 79.23 ± 0.45 76.15 ± 0.72

DistMult

EmbedOnly 48.04 ± 0.68 62.88 ± 7.55 46.43 ± 2.21 64.43 ± 5.32 47.14 ± 1.42 68.57 ± 2.13 47.78 ± 2.26 54.97 ± 4.72

EmbedOnlyRed 48.04 ± 0.68 62.88 ± 7.55 49.35 ± 3.91 69.01 ± 3.24 47.46 ± 0.92 64.98 ± 4.09 47.35 ± 1.69 59.07 ± 4.39

EmbedAugTab 81.07 ± 0.10 71.40 ± 0.19 80.35 ± 0.99 78.30 ± 0.71 80.03 ± 0.31 77.68 ± 0.40 49.60 ± 3.09 55.53 ± 1.33

EmbedAugTabRed 80.16 ± 0.15 70.03 ± 0.12 80.79 ± 0.36 76.45 ± 0.49 79.33 ± 0.08 77.71 ± 0.11 78.27 ± 0.23 74.25 ± 0.15

DistAugTab 80.88 ± 0.08 71.04 ± 0.14 82.18 ± 0.77 78.90 ± 0.81 80.27 ± 0.02 77.39 ± 0.09 53.42 ± 4.61 54.84 ± 2.15

EmbedDistAugTab 80.94 ± 0.15 71.14 ± 0.21 80.57 ± 1.28 78.55 ± 0.73 80.11 ± 0.25 77.56 ± 0.29 50.49 ± 1.92 61.31 ± 1.66

EmbedDistAugTabRed 80.16 ± 0.15 70.02 ± 0.19 81.30 ± 0.11 77.69 ± 0.77 79.34 ± 0.08 77.71 ± 0.11 78.16 ± 0.25 73.92 ± 0.24

EmbedClustAugTab 81.39 ± 0.23 71.32 ± 0.11 72.17 ± 2.71 72.09 ± 2.44 75.31 ± 1.20 73.72 ± 1.25 50.12 ± 3.03 55.90 ± 1.53

EmbedInteraAugTab 80.80 ± 0.21 69.92 ± 0.65 70.67 ± 1.42 70.85 ± 0.59 80.20 ± 0.27 77.46 ± 0.21 47.54 ± 1.95 52.40 ± 5.09

ClustAugTab 81.43 ± 0.16 71.45 ± 0.06 76.78 ± 0.69 75.76 ± 1.84 76.17 ± 0.76 74.26 ± 1.77 59.35 ± 2.53 62.11 ± 8.32

InteraAugTab 80.84 ± 0.13 69.93 ± 0.66 76.42 ± 1.61 74.98 ± 2.28 80.18 ± 0.35 77.49 ± 0.44 47.29 ± 0.74 48.89 ± 5.33

TransH

EmbedOnly 48.22 ± 1.36 53.12 ± 5.31 47.88 ± 2.07 59.80 ± 8.61 48.55 ± 1.95 59.32 ± 2.70 47.57 ± 0.21 50.25 ± 11.95

EmbedOnlyRed 48.22 ± 1.36 53.12 ± 5.31 48.17 ± 1.24 57.54 ± 14.81 48.65 ± 0.36 53.07 ± 5.43 51.85 ± 2.31 54.12 ± 8.21

EmbedAugTab 81.00 ± 0.06 71.24 ± 0.14 80.68 ± 0.31 77.51 ± 1.17 79.89 ± 0.22 77.32 ± 0.39 48.59 ± 0.85 50.51 ± 14.01

EmbedAugTabRed 80.00 ± 0.05 69.74 ± 0.13 79.95 ± 0.66 75.62 ± 0.92 79.33 ± 0.08 77.69 ± 0.03 78.16 ± 0.38 74.17 ± 0.20

DistAugTab 80.98 ± 0.02 71.27 ± 0.03 81.99 ± 0.28 78.55 ± 0.85 80.10 ± 0.15 77.30 ± 0.05 75.34 ± 6.56 73.77 ± 4.42

EmbedDistAugTab 80.95 ± 0.06 71.19 ± 0.10 80.89 ± 1.80 77.97 ± 0.67 80.11 ± 0.04 77.50 ± 0.33 55.48 ± 4.80 57.76 ± 4.51

EmbedDistAugTabRed 80.08 ± 0.00 69.95 ± 0.06 80.72 ± 0.44 76.61 ± 0.28 79.38 ± 0.09 77.78 ± 0.05 78.20 ± 0.27 74.17 ± 0.30

EmbedClustAugTab 80.76 ± 0.43 70.42 ± 1.30 76.68 ± 2.10 74.95 ± 2.07 78.32 ± 0.91 74.42 ± 2.54 48.52 ± 1.59 50.38 ± 13.27

EmbedInteraAugTab 80.39 ± 0.22 69.04 ± 0.57 74.31 ± 4.18 72.08 ± 2.19 80.07 ± 0.39 77.14 ± 0.16 49.50 ± 1.57 48.30 ± 6.44

ClustAugTab 80.82 ± 0.38 70.55 ± 1.22 80.24 ± 0.82 75.94 ± 2.34 78.52 ± 0.93 74.52 ± 2.34 60.35 ± 1.96 56.58 ± 7.13

InteraAugTab 80.43 ± 0.25 69.10 ± 0.53 78.55 ± 2.05 75.16 ± 0.36 79.94 ± 0.35 76.94 ± 0.40 49.40 ± 0.77 41.28 ± 6.69
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The ClustAugTab approach, on the other hand also showed improvements, particularly with KNN. For example,
using RDF2Vec with ClustAugTab led to better clustering of instances, resulting in improved accuracy for KNN
and SVM from 81.02% to 81.18% and from 79.75% to 80.16%, respectively. KNN benefited from this approach
as it relies on distance metrics to identify neighbors, and having meaningful clusters aligned with its decision-
making process. Similarly, SVM showed better results using RDF2Vec for embedding generations and ClustAugTab
approach for data augmentation, possibly because the cluster memberships served as a valuable feature that helped
define clearer support vectors for class separation.

H1.4 Analysis: Sub-hypothesis (H1.4) suggests that certain classes in the data may be more effectively distin-
guished when interactions between KG embeddings and traditional tabular data are considered. This hypothesis
assumes that there are complex dependencies between the relational information captured by the embeddings and
the raw features of the tabular data. The results of the InteraAugTab and EmbedInteraAugTab approaches provide
some support for this hypothesis. For example, SVM shows minor improvement in accuracy using interaction terms
as additional features, from 79.75% (baseline) to 80.11%, 80.18% and 79.94% when Node2Vec, DistMult and
TransH algorithms respectively are being used to generate the embeddings. Comparing between different embed-
ding algorithms, from the table it is shown that RDF2Vec generated the most suitable embeddings to be used for
IntraAugTab approach.

H1.5 Analysis: Sub-hypothesis (H1.5) suggests that reducing dimensionality would help models by removing
irrelevant or noisy features, thus focusing learning on the most informative aspects of the data. The results show
mixed outcomes: while dimensionality reduction sometimes improved performance by simplifying the input space,
it often failed to match the effectiveness of methods that used the full set of features without PCA.

For instance, while EmbedAugTabRed and EmbedDistAugTabRed helped reduce overfitting for XGBoost when
using DistMult to generate the embeddings by eliminating redundant features, it did not outperform the Embe-
dAugTab and EmbedDistAugTab methods for KNN. This suggests that, while PCA can be useful for some models
it might remove valuable information that more sophisticated models can use, highlighting a trade-off between
feature simplification and richness.

Investigating the impact of embedding algorithm The choice of KG embedding algorithm has a significant impact
on model performance across the various approaches. Each embedding method captures different aspects of the
knowledge graph structure, influencing how well the derived embeddings integrate with the original tabular data
and the model’s ability to leverage this information.

From the results shown in Table 5 and the F2 score differences illustrated in Figure 118, it is evident that Node2Vec
and RDF2Vec generally lead to more consistent performance improvements compared to DistMult and TransH,
particularly when combined with approaches such as EmbedAugTab and DistAugTab. For example, Node2Vec
embeddings with the EmbedDistAugTab approach provided the most notable gains across models, including SVM,
and XGBoost. This improvement suggests that Node2Vec’s random walk-based approach is effective in preserving
local neighborhood information and graph structure, which seems to translate well into the feature space used by the
models. The relational patterns it captures may align better with the tabular features, providing additional context
that aids in classification.

RDF2Vec also showed good performance, particularly with EmbedAugTab and ClustAugTab approaches. Its
ability to leverage RDF graph structures and preserve semantic relationships appears to be beneficial, especially for
models such as NN and SVM.

In contrast, DistMult and TransH showed more variable results. While these methods performed well in specific
scenarios—such as DistAugTab with DistMult or TransH, particularly for SVM and XGBoost—they were less
consistent across different approaches. For example, while DistMult’s tensor factorization approach allows it to
capture specific types of relational patterns, this does not always translate into performance gains when used for
approaches such as ClustAugTab, IntraAugTab or EmbedAugTab.

Moreover, the figures show that XGBoost’s performance is particularly sensitive to the choice of embedding
algorithm. While XGBoost generally excelled for DistAugTab or EmbedDistAugTab approach using Node2Vec,

8Note that EmbedOnly and EmbedOnlyRed are omitted from the figure, due to their consistently poor performance, which skewed the scale
for the other approaches
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Fig. 11. F2 score differences relative to baseline across models and embedding methods, showing gain/loss for each approach for heart disease
prediction

it underperformed with simpler methods such as EmbedAugTab when combined with TransH or DistMult. This
suggests that XGBoost requires embeddings that add clear, structured relational information rather than purely dense
vector representations. Thus, Node2Vec and RDF2Vec’s ability to provide richer, more interpretable representations
likely aligns better with XGBoost’s learning mechanism.

In conclusion, the choice of the embedding algorithm plays a crucial role in determining the success of differ-
ent data augmentation approaches. RDF2Vec consistently provides more valuable representations for enhancing
model performance across a range of methods, likely due to their strength in capturing both local and global graph
structures. DistMult and TransH, while potentially effective in capturing specific relational patterns, exhibit more
variability and require carefully chosen augmentation methods to translate their structural information into im-
proved model performance. These findings emphasize that selecting the right embedding algorithm is critical, as it
can significantly influence how well the additional relational data is integrated into the learning process.

Investigating the impact of KGs choice Figure 12 shows the average accuracy and F2 score across all evaluated
approaches implemented with each ontology. It shows that the choice of ontology (Small, Extended, or Snomed)
slightly affects model performance. Using Snomed ontology generally provides the highest accuracy and F2 scores,
due to its clinically structured information from medical experts, highlighting its ability to enrich predictions. The
Small KG yields the poorest results among the three ontologies, arguably due to its handcrafted nature by non-
medical experts, which limits its depth and relevance to complex medical relationships.

Investigating the performance of different ML models across various approaches and embedding algorithms
Across the evaluated models, XGBoost and NN showed the most significant improvements when incorporating var-
ious KG augmentation methods. Specifically, XGBoost’s performance saw the largest gains using the DistAugTab
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Fig. 12. Comparison of accuracy (left) and F2 (right) scores for different ML models across various KGs.

and EmbedDistAugTab approaches. For example, with Node2Vec embeddings combined using EmbedDistAugTab
approach, XGBoost’s F2 score increased from a baseline of 75.19% to 89.27%. This can be attributed to XG-
Boost’s ability to effectively handle high-dimensional feature spaces, allowing it to extract valuable patterns from
the distance-based features derived from the embeddings. However, XGBoost showed a lot of underperformance
when the datasets were augmented with various approaches, especially when embeddings were generated with
TransH and DistMult. This reduced performance may be due to the relational complexity in TransH and DistMult
embeddings, which introduces interdependent features that XGBoost struggles to interpret independently.

On the other hand, KNN showed only slight performance gains when augmented with embeddings but maintained
stable results across different approaches and embedding algorithms.

Looking at the average F2 scores in Table 6 when different embedding algorithms are used to generate the embed-
dings, we can observe that for four approaches SVM gained slightly better performance compared to the baseline,
making it in general more suitable model that gains performance when additional data from KGs is being added,
especially when computing the distances to the target classes, or when the vectors are added as such to augment the
tabular data.

Table 6
Averages of F2 scores across embedding algorithms for different ML models and approaches in heart disease prediction

Model KNN NN SVM XGB
Baseline 71.33 77.44 77.18 75.19

EmbedOnly 48.63 48.84 54.21 49.03
EmbedOnlyRed 48.63 49.31 51.68 51.82
EmbedAugTab 71.35 77.22 77.56 61.47
EmbedAugTabRed 70.00 75.86 77.64 74.73
DistAugTab 71.30 78.29 77.56 75.27
EmbedDistAugTab 71.34 77.36 77.70 71.39
EmbedDistAugTabRed 70.08 76.21 77.71 74.62
EmbedClustAugTab 70.96 73.96 75.13 59.75
EmbedInteraAugTab 68.96 73.86 77.18 61.28
ClustAugTab 71.07 76.12 75.54 64.74
InteraAugTab 68.98 75.97 77.15 59.81

7.2. Kidney Disease Prediction

Table 7 shows the average accuracy and F2 scores, along with the standard deviation across different vector
sizes of the embeddings, for different models, approaches and embedding methods in kidney disease prediction.
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Additional results, including average recall with standard deviation across vector sizes are provided in Table 12 in
Appendix B. In the following paragraphs, we will discuss the results based on the research questions, considering
also the sub-hypothesis H1.1 - H1.5 from Section 5.

Investigating the impact of various methods for data augmentation through KGE From Table 7, we observe that
adding distance-based features to tabular data improves ML model performance, especially for KNN and NN. Al-
though the baseline is already high, enhancements such as distance-to-class, cluster membership features, and em-
bedding vectors still boost performance. For example, KNN accuracy increases from 97% to 99.08% and 99.12%
when the data is augmented with vector embeddings (EmbedAugTabRed) and with embeddings plus Euclidean dis-
tances to classes (EmbedDistAugTabRed), using TransH to generate embeddings. In the following we will discuss
the hypothesis H1.1 - H1.5 based on the results.

H1.1 Analysis: As with heart disease prediction, using only embeddings (EmbedOnly) consistently underper-
forms compared to the baseline, regardless of the ML model or embedding method, contradicting the hypothesis.
This suggests that embeddings alone provide less insight than tabular data for capturing relationships. Performance
is particularly poor with RDF2vec embeddings, likely because RDF2vec focuses on structural patterns rather than
the detailed, feature-specific information captured in tabular data.

H1.2 Analysis: In line with this hypothesis, the table shows that augmenting tabular data with embedding vectors
(EmbedAugTab) generally results in similar or slightly improved accuracy and F2 scores compared to the baseline.
For instance, for KNN, adding Node2Vec embeddings increases accuracy from 97% to 97.19% and the F2 score
from 98.43% to 98.53%. Likewise, for NN, augmenting with RDF2Vec embeddings raises both accuracy and F2
scores from 99.92% and 99.96% to 100%.

H1.3 Analysis: This hypothesis suggests that adding structural features, such as distances to class centroids (Dis-
tAugTab) or clustering membership (ClustAugTab), also adding the embedding vectors (e.g., EmbedDistAugTab),
should enhance performance. Structural features help capture relationships in the data by adding context about group
distances, which is especially useful for proximity-based models such as KNN, SVM and NN. The results support
this, showing performance generally remains consistent with or slightly better than the baseline. For example, for
NN using Node2Vec embeddings, the DistAugTab approach increases accuracy and F2 score from 99.92% and
99.96% to 100%, as Node2Vec effectively captures neighborhood structures that align with these models’ reliance
on similarity. However, with TransH embeddings, which emphasize hierarchical relationships, ClustAugTab and
EmbedClustAugTab slightly decrease accuracy and F2 scores for KNN, NN, and SVM, as these embeddings may
introduce noise rather than meaningful distance-based information.

H1.4 Analysis: Similarly to the heart disease prediction results, Table 7 shows some results supporting the hy-
pothesis that complex interactions between embeddings and raw tabular features can further improve model perfor-
mance. SVM generally maintained its 100% performance across different embedding algorithms. RDF2Vec showed
to be the most compatible embedding algorithm to be used with our approaches, as it did not lead to performance
drops with any approach. KNN on the other hand showed performance improvements when embeddings are used
in those two approaches generated from DistMult, with accuracy improvement from 97.00% with only tabular data
to 97.29% when interaction terms were included via the InterAugTab approach.

H1.5 Analysis: In the line with this hypothesis, suggesting that tabular dimensionality reduction can help elimi-
nate noisy features, the results for kidney prediction show mixed outcomes. For KNN, applying the PCA algorithm
consistently increases both accuracy and F2 scores compared to using the full feature set, particularly for the ap-
proaches EmbedDistAugTab and EmbedAugTabRed. This improvement is expected given KNN’s struggles with
high-dimensional data; it relies heavily on distance calculations, and PCA effectively enhances the quality of these
calculations by reducing noise and emphasizing the most informative dimensions. For instance, when using em-
beddings generated with Node2Vec, dimensionality reduction in EmbedAugTab and EmbedDistAugTab boosts the
accuracy from 97.19% and 97.21% to 99.10% in both cases.

Conversely, the performance of NN, SVM, and XGBoost generally worsened after the dimensionality reduction
step. This could be attributed to the already high baseline accuracy (ranging from 99.75% to 100%); further reducing
the dimensionality might eliminate features that, while not highly significant, still contribute to the model’s perfor-
mance. Additionally, these models can inherently manage high-dimensional data and may not benefit as much from
PCA as KNN does. As a result, the reduced feature set may lack the nuanced information that these more complex
models require for optimal performance.
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Table 7
Average accuracy and F2 scores (with standard deviation across different vector sizes), for various models, approaches, and embedding methods
in kidney disease prediction.

KNN NN SVM XGBoost
Methods Acc. F2 Acc. F2 Acc. F2 Acc. F2
Baseline 97.00 98.43 99.92 99.96 100.00 100.00 99.75 99.46

Node2Vec

EmbedOnly 62.12 ± 0.90 20.45 ± 9.74 61.83 ± 1.76 25.97 ± 15.45 62.56 ± 1.33 22.70 ± 12.15 61.60 ± 1.07 26.67 ± 11.16

EmbedOnlyRed 62.12 ± 0.90 20.45 ± 9.74 61.58 ± 1.13 24.62 ± 14.89 62.92 ± 1.38 23.26 ± 12.30 61.42 ± 1.18 25.43 ± 12.01

EmbedAugTab 97.19 ± 0.11 98.53 ± 0.06 99.83 ± 0.29 99.78 ± 0.39 100.00 ± 0.00 100.00 ± 0.00 99.75 ± 0.00 99.46 ± 0.00

EmbedAugTabRed 99.10 ± 0.07 98.55 ± 0.08 99.75 ± 0.00 99.73 ± 0.23 99.83 ± 0.14 99.64 ± 0.31 99.28 ± 0.38 99.08 ± 0.44

DistAugTab 97.06 ± 0.00 98.46 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.75 ± 0.00 99.46 ± 0.00

EmbedDistAugTab 97.21 ± 0.10 98.54 ± 0.05 99.92 ± 0.14 99.82 ± 0.31 100.00 ± 0.00 100.00 ± 0.00 99.75 ± 0.00 99.46 ± 0.00

EmbedDistAugTabRed 99.10 ± 0.07 98.55 ± 0.08 99.75 ± 0.25 99.73 ± 0.27 99.83 ± 0.14 99.64 ± 0.31 99.47 ± 0.05 99.18 ± 0.26

EmbedClustAugTab 97.38 ± 0.25 98.56 ± 0.24 99.92 ± 0.14 99.82 ± 0.31 99.97 ± 0.05 99.94 ± 0.10 99.75 ± 0.00 99.46 ± 0.00

EmbedInteraAugTab 96.54 ± 0.22 98.03 ± 0.32 98.83 ± 0.52 98.44 ± 1.21 99.06 ± 0.70 97.96 ± 1.53 99.75 ± 0.00 99.46 ± 0.00

ClustAugTab 97.27 ± 0.16 98.54 ± 0.13 99.75 ± 0.00 99.87 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.75 ± 0.00 99.46 ± 0.00

InteraAugTab 96.46 ± 0.22 97.99 ± 0.32 99.00 ± 0.25 98.39 ± 0.49 99.14 ± 0.63 98.14 ± 1.37 99.75 ± 0.00 99.46 ± 0.00

RDF2Vec

EmbedOnly 59.45 ± 0.87 8.59 ± 3.09 62.50 ± 1.10 4.10 ± 1.30 56.64 ± 2.21 13.90 ± 0.58 53.19 ± 0.96 26.59 ± 3.53

EmbedOnlyRed 59.45 ± 0.87 8.59 ± 3.09 56.25 ± 0.00 7.75 ± 0.00 56.58 ± 2.29 13.89 ± 0.58 53.83 ± 1.50 27.52 ± 0.64

EmbedAugTab 97.00 ± 0.00 98.43 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.75 ± 0.00 99.46 ± 0.00

EmbedAugTabRed 99.06 ± 0.00 98.70 ± 0.00 99.75 ± 0.00 99.87 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.50 ± 0.00 99.33 ± 0.00

DistAugTab 97.00 ± 0.00 98.43 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.75 ± 0.00 99.46 ± 0.00

EmbedDistAugTab 97.00 ± 0.00 98.43 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.75 ± 0.00 99.46 ± 0.00

EmbedDistAugTabRed 99.06 ± 0.00 98.70 ± 0.00 99.83 ± 0.29 99.78 ± 0.39 100.00 ± 0.00 100.00 ± 0.00 99.50 ± 0.00 99.33 ± 0.00

EmbedClustAugTab 97.17 ± 0.16 98.52 ± 0.08 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.75 ± 0.00 99.46 ± 0.00

EmbedInteraAugTab 97.00 ± 0.00 98.43 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.75 ± 0.00 99.46 ± 0.00

ClustAugTab 97.17 ± 0.16 98.52 ± 0.08 99.92 ± 0.14 99.96 ± 0.08 100.00 ± 0.00 100.00 ± 0.00 99.75 ± 0.00 99.46 ± 0.00

InteraAugTab 97.00 ± 0.00 98.43 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.75 ± 0.00 99.46 ± 0.00

DistMult

EmbedOnly 66.09 ± 1.99 46.62 ± 9.74 59.17 ± 1.91 44.73 ± 28.08 64.17 ± 0.00 16.95 ± 0.00 55.83 ± 6.17 26.58 ± 35.97

EmbedOnlyRed 66.09 ± 1.99 46.62 ± 9.74 51.88 ± 9.72 74.79 ± 3.58 58.75 ± 0.00 11.63 ± 0.00 63.75 ± 0.00 4.13 ± 0.00

EmbedAugTab 97.02 ± 0.04 98.44 ± 0.02 99.92 ± 0.14 99.82 ± 0.31 100.00 ± 0.00 100.00 ± 0.00 99.75 ± 0.00 99.46 ± 0.00

EmbedAugTabRed 99.08 ± 0.04 98.68 ± 0.07 99.83 ± 0.14 99.91 ± 0.08 99.75 ± 0.00 99.46 ± 0.00 99.42 ± 0.14 99.29 ± 0.08

DistAugTab 97.00 ± 0.00 98.43 ± 0.00 99.75 ± 0.25 99.87 ± 0.13 100.00 ± 0.00 100.00 ± 0.00 99.75 ± 0.00 99.46 ± 0.00

EmbedDistAugTab 97.04 ± 0.07 98.45 ± 0.04 99.92 ± 0.14 99.96 ± 0.08 100.00 ± 0.00 100.00 ± 0.00 99.75 ± 0.00 99.46 ± 0.00

EmbedDistAugTabRed 99.08 ± 0.04 98.71 ± 0.02 99.92 ± 0.14 99.96 ± 0.08 99.89 ± 0.13 99.76 ± 0.27 99.50 ± 0.00 99.33 ± 0.00

EmbedClustAugTab 97.44 ± 0.27 98.59 ± 0.26 99.92 ± 0.14 99.96 ± 0.08 100.00 ± 0.00 100.00 ± 0.00 99.75 ± 0.00 99.46 ± 0.00

EmbedInteraAugTab 97.27 ± 0.24 98.27 ± 0.27 98.25 ± 0.75 96.12 ± 1.74 99.72 ± 0.35 99.40 ± 0.75 95.84 ± 3.69 89.86 ± 9.52

ClustAugTab 97.38 ± 0.17 98.59 ± 0.14 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.75 ± 0.00 99.46 ± 0.00

InteraAugTab 97.29 ± 0.16 98.35 ± 0.19 98.00 ± 0.66 95.53 ± 1.64 99.86 ± 0.24 99.70 ± 0.52 98.33 ± 2.45 96.29 ± 5.49

TransH

EmbedOnly 41.82 ± 3.92 67.08 ± 6.86 45.81 ± 4.30 58.45 ± 7.49 56.64 ± 13.86 33.89 ± 25.46 44.73 ± 3.76 63.87 ± 7.00

EmbedOnlyRed 41.82 ± 3.92 67.08 ± 6.86 39.79 ± 4.16 62.73 ± 9.94 67.50 ± 0.00 85.23 ± 0.00 45.03 ± 5.18 62.13 ± 12.14

EmbedAugTab 97.00 ± 0.00 98.43 ± 0.00 99.83 ± 0.14 99.91 ± 0.08 100.00 ± 0.00 100.00 ± 0.00 99.75 ± 0.00 99.46 ± 0.00

EmbedAugTabRed 99.08 ± 0.04 98.71 ± 0.02 99.83 ± 0.29 99.91 ± 0.15 99.92 ± 0.14 99.82 ± 0.31 99.50 ± 0.00 99.33 ± 0.00

DistAugTab 97.06 ± 0.00 98.46 ± 0.00 99.92 ± 0.14 99.96 ± 0.08 100.00 ± 0.00 100.00 ± 0.00 99.75 ± 0.00 99.46 ± 0.00

EmbedDistAugTab 97.06 ± 0.00 98.46 ± 0.00 99.83 ± 0.14 99.91 ± 0.08 100.00 ± 0.00 100.00 ± 0.00 98.78 ± 1.68 98.86 ± 1.04

EmbedDistAugTabRed 99.12 ± 0.00 98.73 ± 0.00 99.83 ± 0.29 99.91 ± 0.15 99.86 ± 0.13 99.70 ± 0.27 99.50 ± 0.00 99.33 ± 0.00

EmbedClustAugTab 96.92 ± 0.18 98.32 ± 0.18 99.50 ± 0.50 99.74 ± 0.26 99.92 ± 0.14 99.96 ± 0.08 99.75 ± 0.00 99.46 ± 0.00

EmbedInteraAugTab 96.94 ± 0.06 98.36 ± 0.03 99.25 ± 0.43 98.64 ± 1.19 99.83 ± 0.29 99.64 ± 0.62 86.85 ± 4.36 66.82 ± 11.84

ClustAugTab 96.90 ± 0.20 98.31 ± 0.18 99.83 ± 0.14 99.91 ± 0.08 99.92 ± 0.14 99.96 ± 0.08 99.75 ± 0.00 99.46 ± 0.00

InteraAugTab 97.00 ± 0.00 98.40 ± 0.06 99.00 ± 0.66 98.11 ± 1.36 100.00 ± 0.00 100.00 ± 0.00 87.93 ± 4.93 69.47 ± 13.95
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Investigating the impact of embedding algorithm Figure 13 shows the F2 score differences relative to the base-
line across models and embedding methods, highlighting gains and losses for each approach in kidney disease
prediction. The approaches EmbedOnly, EmbedOnlyRed, and EmbedInteraAugTab, as well as InteraAugTab, were
excluded from analysis due to their skewed performance, particularly when using DistMult and TransH to generate
the embeddings, which demonstrated low performance.

Fig. 13. F2 score differences relative to baseline across models and embedding methods, showing gain/loss for each approach for kidney disease
prediction.

From the figure we see that RDF2VEC was shown to be the best suited algorithm among the four embedding
algorithms for our approaches. It generates effective embeddings particularly for KNN where the F2 score is in-
creased for some of the approaches and stayed the same for the others. Moreover for the SVM model it maintained
a perfect F2 score of 100%, in comparison to other embedding algorithms where the performance dropped. This
could indicate that RDF2VEC caputes relevant features that enhance the SVM’s ability to establish clear decision
boundaries, ultimately resulting in higher predictive performance.

In contrast, Node2Vec generated effective embeddings for the KNN model, where it slightly improved perfor-
mance. However, its utility decreased for SVM, XGBoost, and NN, often leading to slight performance drops. This
suggests that while Node2Vec captures local structural information well, it may introduce noise or irrelevant features
for models such as SVM and XGBoost.

Using DistMult to generate the embeddings achieved performance gains with KNN but resulted in decreased
performance for SVM. This inconsistency indicates that while DistMult enhances KNN’s ability to capture relation-
ships, it introduces noise for SVM’s decision-making process.

Similarly, TransH performed best with KNN, especially in the EmbedAugTabRed and EmbedDistAugTabRed
approaches, yet showed weaker results for other models, particularly XGBoost. This discrepancy highlights that



28 M. Llugiqi et al. / Semantic-based Data Augmentation for Machine Learning Prediction Enhancement

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

TransH may capture specific relational aspects beneficial for KNN but lacks the broader applicability needed for
more complex models such as XGBoost.

Overall, our findings suggest that RDF2Vec algorithm is the optimal choice for embedding generation for
augmenting data across various models due to its ability to enhance relevant feature representation. Conversely,
Node2Vec is particularly advantageous for KNN, emphasizing the need to carefully select embedding algorithms
based on the specific model and approach used to ensure the most effective performance enhancement.

Investigating the performance of different ML models across various approaches Table 8 presents the average F2
scores for various ML models in kidney disease prediction, showing the impact of different approaches for com-
bining tabular data with embeddings, averaged across multiple embedding methods. KNN showed the most notable
improvements when augmented with KG embeddings across different approaches, likely due to its weaker baseline
performance compared to the rest and the suitability of distance-based metrics and dimensionality reduction for this
model. Excluding cases where only embeddings were used for training, NN generally maintained its performance
with only slight drops in some approaches, suggesting that NN’s ability to learn complex patterns is somewhat ro-
bust to variations in feature augmentation. SVM, which achieved a perfect F2 score (100%) with only tabular data,
retained this performance in EmbedAugTab, DistAugTab, and EmbedDistAugTab. Similarly, XGBoost preserved
its performance with the four embedding-augmented configurations, though it experienced slight declines in the
remaining cases.

Table 8
Averages of F2 scores across embedding algorithms for different ML models and approaches in kidney disease prediction

Model KNN NN SVM XGBoost
Baseline 98.43 99.96 100 99.46

EmbedOnly 35.69 33.31 21.86 35.93
EmbedOnlyRed 35.69 42.47 33.50 29.80
EmbedAugTab 98.46 99.88 100.00 99.46
EmbedAugTabRed 98.66 99.86 99.73 99.26
DistAugTab 98.45 99.96 100.00 99.46
EmbedDistAugTab 98.47 99.92 100.00 99.31
EmbedDistAugTabRed 98.67 99.84 99.78 99.29
EmbedClustAugTab 98.50 99.88 99.97 99.46
EmbedInteraAugTab 98.27 98.30 99.25 88.90
ClustAugTab 98.49 99.93 99.99 99.46
InteraAugTab 98.29 98.01 99.46 91.17

8. Conclusions and Future Work

In this paper, we proposed several innovative approaches to augment tabular data with semantic information by
leveraging ontologies to capture domain semantics as shown in Figure 14. We utilized these ontologies to construct
KGs, thereby enriching the datasets with structured ontological information. To make the knowledge graphs suitable
for ML models, we employed knowledge graph embeddings to transform the graphs into a vector space representa-
tion. This process enhances the data used to train ML models by integrating domain-specific semantics, allowing the
models to leverage contextual and relational information. Based on our experiment setup, we conducted experiments
for heart and kidney disease prediction.

For RQ1, our experiments demonstrated that incorporating KG embeddings, particularly by augmenting tabular
data with distance-based features to target classes, improves model performance in most of the cases. This en-
hancement is particularly evident in challenging domains such as chronic kidney disease, where accuracy and F2
scores improved despite limited room for improvement, underscoring the value of KG information for refining ML
predictions, especially in data-sparse environments.

For RQ2, our findings indicate that RDF2Vec is the most effective embedding algorithm across models for both
heart and kidney disease prediction, given its ability to capture relevant feature representations without performance
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Fig. 14. Different ways of infusing the KG as input into ML pipeline.

drops. Node2Vec proved particularly beneficial for KNN in kidney disease prediction, while in heart disease pre-
diction, Node2Vec enhanced XGBoost the most. However, XGBoost exhibited instability across approaches and
embedding algorithms in both cases, suggesting the need for careful pairing of embedding methods and models.

For RQ3, in one hand for heart disease prediction overall on average SVM showed the most F2 score improvement
across multiple approaches. Whereas on the other hand for kidney disease prediction, KNN showed the largest
performance gains when enhanced with KG embeddings across various approaches, likely due to its weaker baseline
performance and the suitability of distance-based metrics and dimensionality reduction, which complement KNN’s
neighbor-based approach.

Future work will explore the effectiveness of KGs across diverse domains, particularly those with limited data, by
augmenting sparse datasets to address the data dependency issues in ML models. Additionally, we plan to assess the
scalability of our methods based on data size and structure and experiment with more complex ML models to further
optimize the integration of KG embeddings. Furthermore, we aim to explore alternative embedding models and
investigate methods for mapping literals into the embedding space to evaluate their impact on model performance.
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Appendix A. Additional Experimental Analysis

A.1. Dataset details

Tables 9 and 10 provide an overview of the features in the heart disease and chronic kidney disease datasets,
respectively. Each table includes the feature names, their data types, and corresponding descriptions.

Table 9
Heart Disease Dataset Features

Feature Name Type Description
Age Integer Age of the patient in years

Sex Categorical Gender of the patient (male, female)

CP Categorical Chest pain type (typical angina, atypical angina, non-anginal pain, asymptomatic)

Trestbps Continuous Resting blood pressure (in mm Hg)

Chol Continuous Serum cholesterol in mg/dl

FBS Categorical Fasting blood sugar > 120 mg/dl (true, false)

Restecg Categorical Resting electrocardiographic results (normal, STWaveAnormality, LeftVentricularHyper-
trophy)

Thalach Continuous Maximum heart rate achieved

Exang Categorical Exercise-induced angina (yes, no)

Oldpeak Continuous ST depression induced by exercise relative to rest

Slope Categorical Slope of the peak exercise ST segment (0: upsloping, 1: flat, 2: downsloping)

CA Integer Number of major vessels (0-3) colored by fluoroscopy

Thal Categorical Thalassemia (normal, fixed defect, reversible defect)

Target Categorical Presence of heart disease (1 = yes; 0 = no)
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Table 10
Chronic Kidney Disease Dataset Features

Feature Name Type Description
Age Integer Age of the patient in years

BP Continuous Blood pressure in mm/Hg

SG Continuous Specific gravity

AL Integer Albumin level

SU Integer Sugar level

RBC Categorical Red blood cells (normal, abnormal)

PC Categorical Pus cell (normal, abnormal)

PCC Categorical Pus cell clumps (present, not present)

BA Categorical Bacteria (present, not present)

BGR Continuous Blood glucose random in mg/dl

BU Continuous Blood urea in mg/dl

SC Continuous Serum creatinine in mg/dl

Sod Continuous Sodium level in mEq/L

Pot Continuous Potassium level in mEq/L

Hemo Continuous Hemoglobin level in gms

PCV Integer Packed cell volume

WC Integer White blood cell count

RC Count Continuous Red blood cell count in millions/cmm

HTN Categorical Hypertension (yes, no)

DM Categorical Diabetes mellitus (yes, no)

CAD Categorical Coronary artery disease (yes, no)

Appet Categorical Appetite (good, poor)

PE Categorical Pedal edema (yes, no)

Ane Categorical Anemia (yes, no)

Label Categorical Classification of the disease (ckd, notckd)

Appendix B. Additional Results

Tables 11 and 12 present the average recall (with standard deviation across different vector sizes) for various

models, approaches, and embedding methods in heart disease and kidney disease prediction, respectively.
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Table 11
Average recall (with standard deviation across different vector sizes), across different knowledge graphs, for various models, approaches, and
embedding methods in heart disease prediction.

KNN NN SVM XGBoost
Methods
Baseline 68.37 76.80 76.96 74.31

Node2Vec

EmbedOnly 48.85 ± 5.39 53.39 ± 4.89 51.06 ± 3.52 49.21 ± 4.82

EmbedOnlyRed 48.85 ± 5.39 53.22 ± 3.71 50.73 ± 3.46 53.70 ± 6.81

EmbedAugTab 68.38 ± 0.55 76.26 ± 2.77 77.86 ± 0.71 66.18 ± 5.45

EmbedAugTabRed 67.69 ± 0.31 76.05 ± 1.20 77.88 ± 0.20 74.40 ± 0.89

DistAugTab 68.58 ± 0.18 78.07 ± 1.36 77.67 ± 0.08 90.62 ± 4.51

EmbedDistAugTab 68.68 ± 0.61 76.57 ± 3.02 78.03 ± 0.41 88.73 ± 6.37

EmbedDistAugTabRed 67.83 ± 0.36 74.85 ± 1.55 78.07 ± 0.32 74.47 ± 0.71

EmbedClustAugTab 67.85 ± 1.72 74.53 ± 5.17 75.79 ± 2.64 60.05 ± 6.78

EmbedInteraAugTab 61.74 ± 1.95 76.74 ± 2.90 76.51 ± 1.60 69.50 ± 4.41

ClustAugTab 68.05 ± 1.67 76.27 ± 1.69 76.51 ± 1.01 67.49 ± 5.57

InteraAugTab 61.74 ± 1.60 76.90 ± 0.97 76.56 ± 1.25 73.59 ± 3.10

RDF2Vec

EmbedOnly 29.59 ± 4.88 20.11 ± 9.02 39.13 ± 3.76 43.12 ± 2.16

EmbedOnlyRed 29.59 ± 4.88 19.90 ± 9.07 39.15 ± 3.71 42.84 ± 1.94

EmbedAugTab 68.37 ± 0.00 77.92 ± 0.48 76.96 ± 0.00 74.77 ± 1.70

EmbedAugTabRed 66.60 ± 0.00 75.17 ± 1.00 78.02 ± 0.00 74.79 ± 0.14

DistAugTab 68.37 ± 0.00 77.92 ± 1.11 76.96 ± 0.00 81.05 ± 2.47

EmbedDistAugTab 68.37 ± 0.00 77.77 ± 0.84 76.96 ± 0.00 76.54 ± 0.99

EmbedDistAugTabRed 66.60 ± 0.00 75.64 ± 0.84 78.02 ± 0.00 74.79 ± 0.14

EmbedClustAugTab 68.00 ± 0.18 76.57 ± 0.68 77.02 ± 0.37 74.79 ± 1.12

EmbedInteraAugTab 68.37 ± 0.00 77.75 ± 0.99 76.96 ± 0.00 75.46 ± 0.92

ClustAugTab 68.00 ± 0.18 77.67 ± 1.27 77.02 ± 0.37 74.45 ± 0.43

InteraAugTab 68.37 ± 0.00 77.75 ± 0.55 76.96 ± 0.00 75.67 ± 0.96

DistMult

EmbedOnly 74.45 ± 9.62 77.09 ± 8.04 82.55 ± 2.44 63.16 ± 5.48

EmbedOnlyRed 74.45 ± 9.62 81.10 ± 3.72 78.55 ± 4.97 69.72 ± 5.02

EmbedAugTab 68.42 ± 0.22 78.42 ± 0.64 77.55 ± 0.45 63.31 ± 2.99

EmbedAugTabRed 67.10 ± 0.12 75.49 ± 0.58 78.12 ± 0.12 73.67 ± 0.14

DistAugTab 68.02 ± 0.15 78.25 ± 0.97 77.01 ± 0.12 60.12 ± 1.30

EmbedDistAugTab 68.14 ± 0.23 78.65 ± 0.41 77.33 ± 0.33 70.35 ± 4.26

EmbedDistAugTabRed 67.08 ± 0.21 77.00 ± 1.09 78.12 ± 0.12 73.27 ± 0.21

EmbedClustAugTab 68.26 ± 0.02 74.60 ± 2.51 75.06 ± 2.40 64.17 ± 2.75

EmbedInteraAugTab 66.63 ± 0.73 73.27 ± 0.83 77.18 ± 0.23 59.68 ± 7.25

ClustAugTab 68.40 ± 0.11 76.91 ± 2.39 75.38 ± 2.87 67.78 ± 9.88

InteraAugTab 66.63 ± 0.78 75.72 ± 2.37 77.21 ± 0.50 54.14 ± 7.90

TransH

EmbedOnly 62.07 ± 7.94 69.66 ± 11.46 69.67 ± 2.93 57.37 ± 14.74

EmbedOnlyRed 62.07 ± 7.94 66.98 ± 19.81 63.09 ± 7.23 61.92 ± 11.18

EmbedAugTab 68.24 ± 0.18 77.13 ± 1.81 77.09 ± 0.52 56.87 ± 17.56

EmbedAugTabRed 66.78 ± 0.12 74.67 ± 1.13 78.10 ± 0.00 73.65 ± 0.13

DistAugTab 68.28 ± 0.04 77.85 ± 1.14 76.96 ± 0.00 74.60 ± 2.90

EmbedDistAugTab 68.18 ± 0.11 77.66 ± 0.46 77.25 ± 0.49 62.49 ± 7.83

EmbedDistAugTabRed 67.02 ± 0.06 75.72 ± 0.37 78.20 ± 0.05 73.58 ± 0.29

EmbedClustAugTab 67.28 ± 1.61 75.76 ± 4.10 74.32 ± 3.95 56.56 ± 16.46

EmbedInteraAugTab 65.62 ± 0.78 72.87 ± 2.48 76.80 ± 0.07 52.80 ± 8.82

ClustAugTab 67.42 ± 1.51 75.28 ± 3.49 74.32 ± 3.58 60.34 ± 9.30

InteraAugTab 65.68 ± 0.70 74.81 ± 0.74 76.56 ± 0.42 42.69 ± 8.43



36 M. Llugiqi et al. / Semantic-based Data Augmentation for Machine Learning Prediction Enhancement

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 12
Average recall (with standard deviation across different vector sizes) for various models, approaches, and embedding methods in kidney disease
prediction.

KNN NN SVM XGBoost
Methods
Baseline 100.00 100.00 100.00 99.33

Node2Vec

EmbedOnly 18.44 ± 9.27 24.22 ± 15.15 20.67 ± 11.57 24.74 ± 11.09

EmbedOnlyRed 18.44 ± 9.27 22.89 ± 14.49 21.19 ± 11.74 23.56 ± 12.00

EmbedAugTab 100.00 ± 0.00 99.78 ± 0.38 100.00 ± 0.00 99.33 ± 0.00

EmbedAugTabRed 98.39 ± 0.19 99.78 ± 0.38 99.56 ± 0.38 99.11 ± 0.38

DistAugTab 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.33 ± 0.00

EmbedDistAugTab 100.00 ± 0.00 99.78 ± 0.38 100.00 ± 0.00 99.33 ± 0.00

EmbedDistAugTabRed 98.39 ± 0.19 99.78 ± 0.38 99.56 ± 0.38 99.11 ± 0.38

EmbedClustAugTab 99.89 ± 0.19 99.78 ± 0.38 99.93 ± 0.13 99.33 ± 0.00

EmbedInteraAugTab 99.72 ± 0.35 98.44 ± 1.54 97.48 ± 1.86 99.33 ± 0.00

ClustAugTab 99.94 ± 0.10 100.00 ± 0.00 100.00 ± 0.00 99.33 ± 0.00

InteraAugTab 99.72 ± 0.35 98.22 ± 0.77 97.70 ± 1.68 99.33 ± 0.00

RDF2Vec

EmbedOnly 7.33 ± 2.73 3.33 ± 0.00 12.30 ± 0.46 25.33 ± 3.64

EmbedOnlyRed 7.33 ± 2.73 6.45 ± 0.00 12.30 ± 0.46 26.22 ± 0.67

EmbedAugTab 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.33 ± 0.00

EmbedAugTabRed 98.67 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.33 ± 0.00

DistAugTab 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.33 ± 0.00

EmbedDistAugTab 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.33 ± 0.00

EmbedDistAugTabRed 98.67 ± 0.00 99.78 ± 0.38 100.00 ± 0.00 99.33 ± 0.00

EmbedClustAugTab 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.33 ± 0.00

EmbedInteraAugTab 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.33 ± 0.00

ClustAugTab 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.33 ± 0.00

InteraAugTab 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.33 ± 0.00

DistMult

EmbedOnly 47.92 ± 15.91 48.33 ± 36.55 14.44 ± 0.00 28.89 ± 41.41

EmbedOnlyRed 47.92 ± 15.91 91.67 ± 11.79 9.68 ± 0.00 3.33 ± 0.00
EmbedAugTab 100.00 ± 0.00 99.78 ± 0.38 100.00 ± 0.00 99.33 ± 0.00

EmbedAugTabRed 98.61 ± 0.10 100.00 ± 0.00 99.33 ± 0.00 99.33 ± 0.00

DistAugTab 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.33 ± 0.00

EmbedDistAugTab 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.33 ± 0.00

EmbedDistAugTabRed 98.67 ± 0.00 100.00 ± 0.00 99.70 ± 0.34 99.33 ± 0.00

EmbedClustAugTab 99.89 ± 0.19 100.00 ± 0.00 100.00 ± 0.00 99.33 ± 0.00

EmbedInteraAugTab 99.50 ± 0.29 95.33 ± 2.00 99.26 ± 0.93 89.28 ± 9.60

ClustAugTab 99.94 ± 0.10 100.00 ± 0.00 100.00 ± 0.00 99.33 ± 0.00

InteraAugTab 99.61 ± 0.25 94.67 ± 1.76 99.63 ± 0.64 95.78 ± 6.16

TransH

EmbedOnly 86.04 ± 12.19 72.94 ± 11.05 37.78 ± 34.01 78.80 ± 11.81

EmbedOnlyRed 86.04 ± 12.19 82.31 ± 13.45 100.00 ± 0.00 77.69 ± 18.37

EmbedAugTab 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.33 ± 0.00

EmbedAugTabRed 98.67 ± 0.00 100.00 ± 0.00 99.78 ± 0.38 99.33 ± 0.00

DistAugTab 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.33 ± 0.00

EmbedDistAugTab 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.11 ± 0.38

EmbedDistAugTabRed 98.67 ± 0.00 100.00 ± 0.00 99.63 ± 0.34 99.33 ± 0.00

EmbedClustAugTab 99.89 ± 0.19 100.00 ± 0.00 100.00 ± 0.00 99.33 ± 0.00

EmbedInteraAugTab 99.94 ± 0.10 98.44 ± 1.54 99.56 ± 0.77 65.44 ± 11.90

ClustAugTab 99.89 ± 0.19 100.00 ± 0.00 100.00 ± 0.00 99.33 ± 0.00

InteraAugTab 99.94 ± 0.10 97.78 ± 1.68 100.00 ± 0.00 68.30 ± 13.58
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