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Abstract. Large Language Models (LLMs) have been a dominating trend in Artificial Intelligence (AI) in the past years. At
the same time, neuro-symbolic systems employing LLMs have also received increasing interest due to their advantages over
purely statistical generative models: they can make explicit use of expert knowledge and can be understood and inspected by
humans thus providing explainability. However, with an increasing variety of approaches, it is currently difficult to compare
the different ways in which designing, training, fine-tuning, and applying such approaches take place. In this work, we use and
extend the modular design patterns for hybrid learning and reasoning systems and the Boxology language of van Bekkum et
al. for this purpose. These patterns provide a general language to describe, compare, and understand the different architectures
and methods used for LLM-based neuro-symbolic systems. The primary goal of this work is to support a better understanding
of specific classes of such systems, namely LLM-based models that are used in conjunction with knowledge-based (symbolic)
systems. In order to demonstrate the usefulness of this approach, we explore existing LLM-based neuro-symbolic architectures
and approaches, as well as use cases for these design patterns.

Keywords: design patterns, neuro-symbolic AI, generative models, Large Language Models

1. Introduction

A major driving force for the origin and growth of the field of artificial intelligence (AI) has been the goal of
“making computers solve really difficult problems" [57]. Today, many contemporary observers agree that AI has
taken a leap in recent years [73] and has now reached a level of capacity and productivity that was unprecedented
in previous decades [61]. Since 2010, AI systems have reached a close-to-human or even superior-to-human level
in many computer vision tasks [40]. Since 2020, an increasing number of AI systems have been introduced that
are able to successfully complete complex text generation tasks in natural language processing (NLP) [55], such as
text summarization, translation, and question answering. More recently, the concept of generation has even been ex-
tended to multi-modal approaches involving, for example, text input and image output [6, 35, 68, 89, 106]. Many of
these systems have demonstrated natural language processing capabilities at a level very close-to-human capabilities
[113].

These developments are largely attributed to advances in deep learning techniques, in particular in the form of
generative AI and Large Language Models (LLMs). A wealth of different LLM models have been and are being
developed and published, both open-source and proprietary [10, 20, 42, 56]. The key technology most current
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LLMs use is the transformer architecture. The original transformer architecture published by Vaswani et al. [87]
proposed using two interacting models, an encoder and a decoder. These can be trained end-to-end (such as flan-T5
[13]). Alternatively, architectures have been proposed using encoder-only (BERT [19]) or decoder-only (GPT [8],
BLOOMZ [59], PaLM [12]) models. As only a few LLMs based on other architectures have been proposed [4, 65],
in this paper, we focus on transformer-based LLMs and consider encoder-only, decoder-only, and encoder-decoder
systems to be possible types of LLMs.

These different categories of transformers provide different advantages and disadvantages, depending on the in-
tended scenario. Encoder-only transformers, such as BERT [19], specialise in contextual encoding, often named
base models. They use context to encode input sentences and represent them as machine-interpretable represen-
tations, such as vector representations. Decoder-only systems are complementary to the encoder-only paradigm,
but structurally different [55]. A decoder-only system decodes the input data directly, without being transformed
into a higher and more abstract representation to the desired representation (text, images, or otherwise). Exam-
ples of this are generative models from the GPT family [8]. Decoder-only architectures can be further divided into
causal decoder architectures and prefix decoder architectures. Causal decoder architectures, such as GPT [8, 67] and
BLOOMZ [59], use only unidirectional attention to the input sequence by using a specific mask. Prefix decoder ar-
chitectures, such as PaLM [12], use bidirectional attention for tokens in the prefix while maintaining unidirectional
attention to generate subsequent tokens.

Despite the many impressive achievements and capabilities of many LLMs, a wide variety of challenges remain
for purely statistical LLMs [38]. This includes not only substantial costs for training [76] and inference [72], but
also the infamous phenomenon of hallucination: situations where a trained LLM generates outputs presented as
plausible or authoritative information that are factually incorrect, nonsensical, or unfaithful to the input or context
[34]. In general, this phenomenon is attributed to the lack of training data for certain outputs, often indicating a
lack of domain-specific knowledge [112]. While this may in part be corrected by retrieval-augmented generation
(RAG) [25] and fine-tuning [107], they introduce novel challenges by themselves; fine-tuning, for example, may
well raise significant additional training costs and may lead to catastrophic forgetting. A challenge in using RAG
is that the performance is highly dependent on the quality and accuracy of the information retrieved. Moreover,
both hallucinations and lack of domain-specific knowledge are often hard to identify or contextualize due to the
inherent lack of explainability and interpretability of LLMs [63, 111]. It is therefore fair to state that current LLM-
based systems and applications lack a sufficient degree of trustworthiness [32, 47], rendering them unusable where
reliable output is essential (e.g., in scientific discovery [75]).

In response to these challenges, a variety of novel neuro-symbolic approaches to LLM-based AI systems have
recently emerged [29, 94]. Due to the quantity and diversity of emerging generative techniques, it becomes in-
creasingly challenging to keep track of the ever-growing variety of models with different LLM architectures and
capabilities [14]. This becomes even more challenging with the growing diversity in combining LLMs with sym-
bolic AI techniques using different strategies on different architectural levels and training stages [2, 18]. A practical
solution to tackle the issue of analysing and understanding these approaches in a systematic way is to apply a high-
level conceptual framework to discuss, compare, configure, and combine different models. Such a framework is
provided by the Boxology, introduced by van Harmelen and ten Teije [86] in 2019. The Boxology was extended in
2021 [84] by providing a taxonomically organised vocabulary to describe both processes and data structures used
in hybrid systems. The Boxology represents a flexible and widely applicable framework for representing AI design
patterns.

In this paper, which is an extension of our previous work on LLM-based neuro-symbolic systems [17], we propose
to use and extend Boxology to gain insight into a variety of LLMs, specifically on LLMs used in a neuro-symbolic
approach. To this end, this paper provides two contributions: firstly, we propose novel design patterns as an extension
of the current Boxology to promote transparency and trustworthiness in system design, by providing interpretable,
high-level component descriptions of LLM-based neuro-symbolic systems. Our modular approach supports new
architectures and engineering approaches to LLM-based systems. Secondly, we test validity and usefulness of the
Boxology and our extensions in this field on example architectures and applications, such as ChatGPT, KnowGL,
GENOME and Logic-LM.

The remainder of the paper is organised as follows. In the next section, we give a more detailed overview of the
related work regarding LLMs and LLM-based neuro-symbolic systems. In the third section, we propose to extend
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the Boxology by three novel basic patterns in order to be able to handle LLMs, and in the fourth section we explain
several compositional design patterns in this field. In section 5, we dive into specific applications and tasks in which
LLMs, specifically in neuro-symbolic systems, are used. We conclude with a discussion (section 6) and a conclusion
summarising our key findings and outlining future work in section 7.

2. Related Work

2.1. Neuro-Symbolic Systems and Design Patterns

For a long time, the field of AI developers had been shaped by an opposition between "imitators of the mind"
favouring symbolic AI approaches and "imitators of the brain", favoring statistical approaches, such as artificial
neural networks [16]. Today, however, combining the complementary strengths and weaknesses of symbolic and
statistical approaches is considered crucial for the creation of reliable, trustworthy, and effective AI systems [51].
After a first wave of symbolic approaches and a second wave of statistical approaches, the combination of symbolic
and statistical approaches is therefore anticipated as the latest, third wave of AI [26, 85]. Starting in the early 1990s,
neuro-symbolic AI has been emerging with a large variety of diverse approaches. This characteristic has been
recognised early with descriptive classification approaches [28, 53] and workshops that showcase and celebrate
the diversity of neuro-symbolic systems [81]. A basic yet widely recognized and applicable taxonomy published
by McGarry et al. in 1999 differentiates three main classes of hybrid neural systems [52]: unified hybrid systems,
translational hybrid systems and modular hybrid systems.

Unified and translational hybrid systems as defined by McGarry have been a popular area of study within the
neuro-symbolic AI community during the last two decades [5, 105]. At the same time, modular hybrid systems have
also gained wider interest due to its relevance for designing modern AI systems under industrial conditions [74].
In general, the design paradigm of modularization is characterised and motivated by the possibility to reuse and/or
reorganise modules. Identifying and characterising design patterns for modular approaches of neuro-symbolic has
led to the development of the so-called Boxology framework described below [84, 86]. This framework has been
used and extended in different ways, such as the formalisation of the notions from the Boxology and implementation
in the heterogeneous tool set [58], the extension of the Boxology for (teams of) actors [54], the characterisation of
emerging data-driven knowledge engineering trends [71], and the systematic study of nearly 500 papers published
in the past decade in the area of Semantic Web Machine Learning [7]. While the original Boxology framework
focused on architectural aspects of hybrid learning and reasoning, it has been pointed out the necessity of including
representations of human involvement into such patterns [54, 96]. Despite the usefulness and manifold advantages
of the above-mentioned traditional taxonomies and studies, however, it must be stated that none of these are able to
foresee and fully capture the characteristics of the latest generation of neural systems [17], in particular the broad
capabilities and the required extraordinary architectural complexity of LLMs.

A recent approach to describe modular neuro-symbolic AI systems is the ontological visual framework termed
EASY-AI, which uses semantically enhanced symbols to represent the components and architectures of the AI
system [21]. EASY-AI aims to provide a standardised symbolic language for conveying the structure, purpose, and
characteristics of AI systems. The approach presents the logical formalisms underpinning this visual framework,
with the objective of enhancing the comprehensibility and understandability of AI system behaviours. Recently,
this framework has also been provided with an initial implementation named SNOOP-AI [22]. This framework and
implementation could be used in the implementation of the design patterns, as it can provide a formal conceptual
foundation for the design patterns that allows formal reasoning over (compositions of) its elements. To the best of
our knowledge, specific LLM-based use cases have not been tested using formalisation and implementation yet.

2.2. LLM-based Neuro-Symbolic Systems

While older frameworks for neuro-symbolic AI have not been designed to reflect the latest generation of complex
large-scale neural components in the first place, some alternative approaches for combining LLMs and knowledge-
based components have been designed from scratch. Colon-Hernandéz et al. were among the first to to do so by
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identifying three different categories of so-called knowledge injections [15]: approaches to modify the architecture
of LLM by adding additional layers that integrate knowledge with contextual representations or by modifying exist-
ing layers (termed architectural injections) are distinguished from approaches aiming to modify either the structure
of the input or the data selected to be fed into the LLM (referred to as input injection) and approaches to change
either the output structure or the losses that were used in the base model in some way to incorporate knowledge
(termed output injection). While providing new insights and perspectives for LLM-based neuro-symbolic systems,
however, this injection-oriented approach is centered largely around modifications of LLMs, leaving out the modular
perspective of integrating equally relevant neural and symbolic components.

In light of the popularity and success of knowledge graphs (KG) in recent years [33], it is not surprising that this
symbolic technique is a prime candidate for many researchers thriving the enhance LLMs. To this end, Agrawal
et al. have suggested to distinguish between LLM-based systems with knowledge-aware inference (KG-augmented
retrieval, KG-augmented reasoning, or KG-controlled generation), knowledge-aware training (pre-training or fine-
tuning), and knowledge-aware validation [1]. While their taxonomy represents a rather empirical high-level catego-
rization, an alternative approach by Pan et al. [63] provided a more differentiated approach where a distinction is
made between KG-enhanced LLMs, LLM-augmented KGs and synergised LLMs + KGs. For KG-enhanced LLMs,
two primary approaches have been explored: incorporation during the pre-training stage to facilitate knowledge ac-
quisition and utilisation during the inference stage to improve access to domain-specific information. Additionally,
KGs have been employed post-hoc to augment the interpretability of LLMs, elucidating both factual content and
reasoning processes. In order to augment KGs, LLMs have been employed as text encoders to enrich KG repre-
sentations and extract relations and entities from the original corpora. Recent studies have focused on designing
KG prompts that effectively convert structural KGs into LLM-comprehensible formats, allowing direct application
of LLMs to KG-related tasks such as completion and reasoning. Moreover, the authors have proposed considering
the effects and concepts of synergised LLM + KG with respect to four layers: 1) Data, 2) Synergised Model, 3)
Technique, and 4) Application. We will loosely use the categorisation of this paper in our exploration of different
LLM-based neuro-symbolic systems.

3. Extending the Boxology framework with novel elements

We base our paper on the previous work of van Bekkum and colleagues [84], in which a taxonomically organised
vocabulary is provided to describe both processes and data structures used in neuro-symbolic systems. The highest
level of this taxonomy contains instances, models, processes, and actors, which may be described as follows:

Instances: The two main classes of instances are data and symbols. Symbols are defined as having a designation to
an object, class, or relation in the world that can be atomic or complex, and when a new symbol is created
from another symbol and a system of operations, it should have a designation. Examples of symbols are labels
(short descriptions), relations (connections between data items, such as triples), and traces (records of data
and events). Data is defined as not symbolic. Examples are numbers, texts, tensors, or streams.

Models: Models are descriptions of entities and their relationships, which can be statistical or semantic. Statistical
models represent dependencies between statistical variables, such as LLMs or Bayesian Networks. Semantic
models specify concepts, attributes, and relationships to represent the implicit meaning of symbols, such as
ontologies, taxonomies, knowledge graphs, or rule bases.

Processes: Processes are operations on instances and models. Three types of processes are defined: generation,
transformation, and inference. Generation can be performed using, for example, the training of a model or by
knowledge engineering. Transformation is the transformation of data, for example, from a knowledge graph to
vector space. Inference can be inductive or deductive, in which induction generalizes instances and deduction
reaches conclusions on specific instances, such as classification.

Actors: Actors can be humans, (software) agents, or robots (physically embedded agents). [54] extended the origi-
nal paper with a definition of teams of actors in the Boxology.
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In addition to vocabulary, visual language is defined in [84], as an extension of [86]. The visual language consists
of rectangular boxes (instances), hexagonal boxes (models), ovals (processes) and triangles (actors), and untyped
arrows between them. Within the boxes the concept will be noted by each level in the vocabulary using colon-
separation from most generic to most-specific, for example a neural network will be model:stat:NN. In the
figures we use the notation of most generic and more specific only to improve readability, so model:NN.

3.1. Introducing a new elementary pattern

The classic Boxology framework [84] is based on eight elementary patterns (cf. Figure 1). The elementary patterns
1a-1d are elementary to generate a model, in particular for both statistical as well as semantical models. For instance,
Pattern 1a shows how to train a statistical model (such as a neural network) using data (such as text or images).
Pattern 1b shows how to create a semantic model (such as a knowledge graph) using symbols (such as triples). The
elementary patterns 2a-2d are patterns describing how to use a model. Pattern 2a, for example, shows a statistical
model (such as a neural network) being used to deduce symbols, i.e. for a classification task. Pattern 2b depicts the
application of a semantic model, for example when using it for reasoning.

When seeking to apply any of the eight elementary patterns of the classic Boxology framework to represent
LLMs, however, it becomes apparent that such generative AI approaches are not adequately represented in these
elementary patterns. While the main characteristic of generative AI systems is the ability to output new data for
given input data, in the existing elementary patterns only symbols or models can be inferred. Therefore, we propose
to extend the eight elementary patterns (Figure 1, 1a-1d and 2a-d) by introducing a new additional elementary
pattern 2e (Figure 1). In contrast to the existing elementary patterns, this novel pattern allows to represent LLM-
based neuro-symbolical systems since this pattern represents a model that can infer new data from data. This new
data can be an image, video, or text, depending on the type of model. For example, with GPT [8], LLaMa [20] and
similar generative text models, new text is generated based on given input text.

While we focus on textual models in this paper, it is worth mentioning that the pattern proposed in this section
abstracts from the specifics of the type of data. The new elementary pattern 2e is thus transferable to other generative
models and data types and applies also for example to image generation models [6, 35, 68, 89, 106], which can
generate image data from text data. Specifically this would mean that the type of input data would be data:text
and the type of output data would be data:image.

3.2. Introducing a new compositional pattern

One of the key characteristics of the Boxology framework is its modularity, allowing the combination and reuse
of elementary patterns in compositional patterns. Van Bekkum et al. describe, for example, the two compositional
patterns 3a and 3b depicted in Figure 2 [84]. For the compositional pattern 3a, the two elementary patterns 1a and 2a
(Figure 1) are combined. The resulting compositional pattern describes a basic structure for a (statistical) machine
learning model depicting the training (creation of the model) and testing or application phase (application of the
model on new data). Similarly, the compositional pattern 3b is created from combining two elementary patterns,
allowing to depict a basic structure for a semantic model.

When seeking to use any of the two compositional patterns 3a and 3b as a combined representation for training
and application of an LLM, however, it becomes apparent that – just as with elementary patterns for LLM-based
training and inference – the compositional patterns of the classic Boxology framework are not well-suited for this.
Thus, we introduce the new compositional pattern 3c (Figure 2) for the combined training and application of an
LLM. This additional pattern is built from a combination of the two elementary patterns 1a and 2e (Figure 1).
Similar to the novel elementary pattern 2e, this novel compositional is not limited to text-based data only, but can
also be applied to any type of data, including image data, audio data, and multimodal data.
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Fig. 1. All elementary design patterns, including novel addition 2e. Patterns 1a to 1c allow for model generation, 1d for transforming data and
patterns 2a to 2e allow for model use.

Fig. 2. Compositional design patterns, including novel addition 3c made by combining elementary pattern 1a and 2e. Patterns 3a and 3b visualize
the patterns for full learning and prediction tasks from data/symbols.
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4. LLM-based Neuro-Symbolic Design Patterns

Current LLM-based neuro-symbolic systems often either use an LLM followed by a semantic model, or a se-
mantic model followed by an LLM, or a combination of two models in parallel of which the output is fused. In
this section, we propose compositional design patterns for these different types of system. We loosely follow the
categorisation of Pan et al. [63]. We divide the section into training and application phases, as the patterns for these
phases are distinct.

4.1. LLM-based Neuro-Symbolic Design Patterns in Training

Generative neuro-symbolic systems can use semantic models in the training of an LLM or use an LLM to create
a semantic model, or can be used in synergy to create a model. In the following subsections, we will describe the
different patterns in more detail.

4.1.1. KG-enhanced LLMs
KGs can be used to enhance LLMs in training, for example by influencing the training data. An example of this

is shown in the design pattern in Figure 3. Here, a KG is used to infer symbols (pattern 2b). These symbols are then
changed into data (pattern 1d). This data is then used to train the LLM (pattern 1a). This depiction can be used to
represent [44, 69, 77, 98], for example when a KG is used when masking the data to improve the training of the
LLM. For example, in GLM [77] the masking probability is higher for concepts which are close together in the
KG. On the other hand, SKEP [83] uses a KG to identify words of high sentiment and gives them a higher masking
probability.

4.1.2. LLM-augmented KGs
LLMs can be used to enhance KGs as KGs might be incomplete and textual information is not integrated in the

embedding itself. It can be represented in Boxology as presented in Figure 4. Similar to the KG-enhanced LLMs in
training, new data is infered by an LLM (pattern 2e). These are then transformed to symbols (1d) and used to create
or add on to a KG model (1a). For example, Nayyeri et al. [60] generate representations on different levels such
as sentence and document using LLMs and Huang et al. [31] create multi-modal embeddings. Models following
this structure are often used for tasks such as LLM-augmented KG completion and construction, including Named
Entity Recognition, Coreference Resolution, and Relation Extraction. For example, KG-BERT, MLT-KGC, and
PKGC use LLMs for the completion of a knowledge graph [41, 50, 101]. They use the LLM output to predict the
relation between new entities and existing ones. Yan et al. [99] uses LLMs to aid in Named Entity Recognition,
[9, 37] for Coreference Resolution, and [64, 78] for Relation Extraction.

4.1.3. Synergised LLMs and KGs
One of the ways in which LLMs and KGs are synergised in training is using an LLM for joint text and KG

embedding or representation. Figure 5 shows the Boxology representation of these types of systems. The symbolic
triples are transformed into text (pattern 1d), which is then combined with other text to integrate both the graph
structure and the textual information into the embedding simultaneously and trained to create a model (pattern
1a). For example, kNN-KGE sees entities as special tokens and incorporates them into sentences as input for the
LLM [90]. LMKE has a similar system structure but applies a different learning method to improve the learnt
embeddings [92]. LambdaKG improves the representation of the graph structure by including neighbouring entities
in the input sentence [97]. KEPLER, JointGT and DRAGON use a unified model for the knowledge embedding
and pre-trained language representation [39, 91, 103]. They have pre-training tasks to come to a joint knowledge
embedding and language modelling optimisation. ERNIE proposes a dual encoder system, consisting of a textual
encoder that is fused with the knowledge graph encoder [109]. BERT-MK has a similar dual encoder, but adds
additional information from neighbouring entities to the knowledge graph [27]. Coke-BERT further improves on
this idea by adding a module to filter out irrelevant neighbouring entities [79]. JAKET fuses the entity representation
in the middle layers of the LLM [104].
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Fig. 3. KG-enhanced LLMs in training.

Fig. 4. LLM-augmented KGs in training

Fig. 5. Synergised LLMs and KGs in training
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4.2. LLM-based Neuro-Symbolic Design Patterns during Inference

Neuro-symbolic systems often combine KGs and LLMs during inference, after training. In this way, the system
is more robust to new situations. Many of the LLM-based neuro-symbolic systems follow one of the pre-defined
patterns. This section will highlight three depictions of the LLM-based NeSy systems during inference.

4.2.1. KG-enhanced LLMs
KGs can be used to enhance LLMs by utilizing the knowledge in KGs. One way to do this is represented in

Figure 6. It shows how a KG is used to infer symbols (pattern 2b). These symbols are then transformed to data
(pattern 1d) which is used by the LLM to generate new data (pattern 2e). This can be useful for example to align the
input data with the knowledge or augment it by adding relevant facts for the LLM to improve the output. In contrast
to KG injection during training (see subsubsection 4.1.1), the results of pattern 2b and 1d are now input to the infer
process instead of the train process. This means that the knowledge is up to date at the time of inference, rather than
at the time of training, which may happen a long time before deployment.

This pattern describes systems that transform the input data by aligning them with the knowledge of the KG before
they are fed into the deduction process with an LLM model. This can be done in a prompt engineering process using
KGs [45, 49, 88, 95] or retrieval-augmented knowledge methods such as RAG [43]. KagNet first encodes the input
KG and then augments it with textual representation [46].

4.2.2. LLM-Augmented KGs
LLMs can be used to augment KGs to improve information deductions (Figure 7). An LLM is used to infer data

(pattern 2e). Then the data is transformed to symbols (pattern 1d) for the KG to reason over (pattern 2b). As with
KG-enhanced LLMs during inference, the difference between training and inference for LLM-augmented KGs is
that the first pattern is input to infer process rather than to train process of the KG.

One example is using LLMs for KG embedding. Pretrain-KGE uses an LLM to encode the text of the parts of
the triples and uses that encoding as a starting point for the KG encoding [110]. Moreover, in answering questions
with LLM-augmented KG, LLMs are used to bridge the gap between natural language questions and the retrieval
of KG answers [30, 48]. In addition, LLMs can be used for the generation of text from a knowledge graph, where
LLMs are used to generate natural language that describes facts from KGs [23, 80, 93]. MHGRN uses the LLM
representation of the text to guide the reasoning process in the KGs [24].

4.2.3. Synergised LLMs and KGs
LLMs and KGs can be combined to work in synergy, also in the application phase. Figure 8 shows how this can

be applied, specifically in the case of synergised reasoning. Here, the model is fed both symbols and data, both in
the training and in the application phase.

Examples of such methods are JointLK [82] and GreaseLM [108]. They include interactions between the tokens in
the textual input and the entities in the graph in the model’s layers. QA-GNN [102] represents the LLM information
as a special node in the KG for reasoning.
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Fig. 6. KG-enhanced LLMs during inference

Fig. 7. LLM-augmented KGs during inference

Fig. 8. Synergised LLMs and KGs for reasoning
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5. Use Cases

In this section, we describe and explore several papers that propose an LLM-based neuro-symbolic system. The
selected papers are chosen, as they represent a diverse set of possibilities to use an LLM in a system pipeline (on
the input side of the system, somewhere in the inner part, or on the output side) as well as act as a fluent language
interface or a formal language interface on the input or output side.

5.1. Retrieval-Augmented Generation (RAG)

Retrieval-Augmented Generation (RAG) is a method that expands an LLM with external knowledge [43]. A RAG
system has two main components, a retriever and a generator. Figure 9 shows the Boxology representation of a RAG
system, where the retriever is the model in pattern 2a and 1d and the generator is the LLM in pattern 2e. Firstly,
the retriever selects relevant documents based on the posed question (pattern 2a), through classification or with help
of a Knowledge Graph. Secondly, the question and retrieved documents are transformed (1d) to be presented to an
LLM in a prompt (pattern 2e). Thirdly, the LLM generates an answer to the question based on the information in
the selected documents. The LLM can also present the source of the information, making it more trustworthy and
reliable.

In KD-CoT, KSL and Think-on-graph, facts are retrieved from a KG together with the reasoning, and an LLM
generates a natural language answer to be presented to the user [23, 80, 93]. RAG is a prime example of the KG-
enhanced LLM pattern, as presented in subsubsection 4.2.1.

Fig. 9. Use of Retrieval-Augmented Generation

5.2. KnowGL

The KnowGL parser is a system developed by IBM Research for converting data into symbols. More specifically,
it can be used to automatically extract knowledge graphs from collections of text documents [70]. KnowGL employs
an LLM to extract semantic triples from each sentence, which are then enriched with semantic annotations. Figure 10
shows the Boxology representation of the KnowGL parser. Pattern 2e represents the BART-large model receiving
a sentence and inducing a list ‘subject, relation, object’. In the next step, represented by pattern 2b, a ranked list is
created of distinct facts and their scores. In the final step, the generated facts are linked to Wikidata. This is done
using a mapping of labels to Wikidata IDs (pattern 2b). In the case that the LLM has created a new entity, type, or
relation label that are not in Wikidata it returns ‘null’.

The architecture of the KnowGL parser displays a variation of the LLM-augmented KG in inference pattern, in
subsubsection 4.2.2.
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Fig. 10. Boxology representation of KnowGL [70]

5.3. KnowBERT

Although knowledge is mostly injected into statistical generative models during the input or during the out-
put stage, approaches to inject knowledge inside the model have also been proposed. A prominent example is
KnowBERT, a modified variant of BERT [66]. It stands out for its fusion of contextual and graph representations,
attention-enhanced entity-spanned knowledge infusion, and flexibility in injecting multiple Knowledge Graphs at
various model levels. KnowBERT embeds multiple knowledge bases (WordNet and a subset of Wikipedia) into
LLMs to enhance their representations with structured, human-curated knowledge. By integrating the Knowledge
Attention and Recontextualisation layers [3], graph entity embeddings are used that are processed through an atten-
tion mechanism to enhance entity span embeddings. This happens in later layers of the model to stabilise training,
but can also potentially be used to inject knowledge at earlier stages [15]. The Boxology pattern for KnowBERT is
shown in Figure 11 and is the same as the pattern presented in subsubsection 4.1.1 (KG-enhanced LLMs in training).
Pattern 2b represents the incorporation of knowledge bases (KB) into a pre-trained BERT model, using an integrated
entity linker, as shown with pattern 1d. Finally, the Knowledge Attention and Recontextualization component is the
heart of KnowBert, which is represented as pattern 1a.

Fig. 11. Boxology representation of KnowBERT [66]

5.4. Mathematical Conjecturing and LLMs

Theory explanation or automated conjecturing is the process of inventing new conjectures about a set of functions.
The system [36] has two principal components: 1) the system assigns the generative task of discovering mathemat-
ical conjectures to an LLM, 2) the results are checked using a symbolic theorem prover or counterexample finder.
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The LLM is first trained on data from a formal language (pattern 3c). The system is then prompted with a formal
theory (e.g. a sort function), and has the LLM generate lemmas from the theory as output data. These generated
lemmas are transformed from data to symbols (pattern 1d) and are subsequently used by a semantic model(s) prover
(pattern 2b). The Boxology representation is depicted in Figure 12.

The approach taken in Yang et al. [100] is also captured by this representation. The system proposed first uses an
LLM component that has been trained on Prolog to generate Prolog code as output (pattern 3c). The output is then
transformed to symbols (1d), a symbolic inference engine then produces answers and reasoning traces by executing
the code mentioned above (pattern 2b).

Both of these examples show a generalisation of the Boxology pattern in subsubsection 4.2.2 (LLM-augmented
KGs during inference), where the KG is replaced by a different semantic model.

Fig. 12. Boxology representation for using LLMs for discovery of mathematical conjectures [36]

5.5. GENOME

Generative Neuro-Symbolic Visual Reasoning by Growing and Reusing Modules (GENOME) focuses on the
task of generative software module learning [11]. Its architecture is based on one LLM generating signatures
(input/output) for these software modules and reasoning steps, while another LLM subsequently creates the tar-
geted software module based on those; as usually, both LLMs have been created by means of pre-training. Finally,
GENOME employs a deductive reasoner to evaluate the LLM-generated module on a test case.

Figure 13 shows the Boxology representation of GENOME. The system consists of three stages, module initial-
isation, module generation and module execution, represented by two compositional and one elementary pattern.
First, an LLM assesses a visual-language question and outputs new module signatures and operation steps as a re-
sponse to the query (pattern 3c), if current modules from a library cannot provide an adequate response. In the next
step, the LLM generates a module (software code) based on the signature/test case (pattern 3c, 2nd component).
Finally, the module is executed by passing it a visual query (pattern 2a).

This use case is an extension of the LLM-augmented KGs during inference as described in subsubsection 4.2.2,
deploying two LLMs in sequence.

5.6. Logic-LM

The approach taken by Logic-LM [62] integrates LLMs as a natural language interface with symbolic solvers to
improve logical problem-solving. The logical problem can e.g. be stated as logical programming, first-order logic or
a constraint satisfaction problem. This approach is depicted in Boxology notation in Figure 14. Here the system uses
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Fig. 13. Boxology representation of GENOME [11]

LLMs that are trained in the specific logic language (pattern 3c) to translate a problem stated in natural language
into a symbolic formulation (patterns 3c and 1d). In the next step, a symbolic reasoner module performs logical
inference on the formulated problem and transforms the symbolic results into data (patterns 2b and 1d), using a
semantic model and a transformation of logical symbols to a prompt. Finally, an LLM receives the results as an
input prompt and outputs a solution in natural language (pattern 3c). The LLM thus functions as a fluent language
interface to and from a symbolic reasoner component. The main reasoning is performed by a logic engine (symbolic
reasoner), in order to guarantee correct and verifiable results.

This representation is a combination of the patterns presented in LLM-augmented KGs during inference, subsub-
section 4.2.2, and KG-enhanced LLMs during inference, subsubsection 4.2.1.

Fig. 14. Boxology representation of Logic-LM [62]
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6. Discussion

Advancements. A key contribution of this work is the introduction of novel design patterns. In particular, we in-
troduce a novel elementary pattern and a novel compositional pattern to complement the existing Boxology patterns.
The novel patterns proposed in this paper provide a more fine-grained description of the model element, introduc-
ing the generative model. The novel elementary pattern allows, for the first time, to use the Boxology to represent
data in - data out processing, which is the key concept underlaying generative AI techniques. Although we apply
it exclusively to LLMs, we have argued that its level of abstraction lends itself to representing other types of gen-
erative models, such as generative image models. As a natural derivate of this, the newly introduced compositional
pattern employed this elementary pattern to integrate training and inference for generative models. Providing three
principled integrations of LLMs and KGs, we illustrate how the composition of elementary patterns can be used to
describe LLMs, and we explore several categories as well as specific approaches in use cases, such as KnowGL,
GENOME and Logic-LM.

Conceptualization. Whereas our extension demonstrates its applicability in describing key architectural features
of LLM-based neuro-symbolic systems, it raises interesting questions about the nature of other Boxology elements
directly related to the new element representing generative models (model:generative). The classical opposi-
tion of data and symbols, for example, has been a long-standing premise of the Boxology framework. Considering
the input and output related to generative models, however, one may wonder whether the output is actually of the
same nature. While no straightforward answer seems to be at hand, the framework might benefit from revisiting
the underlaying nature of data versus symbols. At the same time, we notice that the deductive inference element
perhaps generalises from the finer details of the inference capabilities of a generative model to a certain extent. The
probabilistic nature of these models may well be captured by a finer distinction in the Boxology inference concept,
which can perhaps also cover new classes of inference that have so far not been covered.

Ambiguity. In the process of applying basic design patterns to specific use cases, naturally questions arise about
which pattern combinations are allowed and which are not. However, the truth is that Boxology will not in all
real-world LLM-based neuro-symbolic systems lead to one unique and unambiguous representation. In practical
classroom settings, for example, we have experienced the updated Boxology framework to yield multiple options
for describing the same system, depending on the individual student or engineer. Much like some of the notations
of UML have proven to lend itself to different designs of the same system based on different points of view, this
phenomenon is likewise inherent to the Boxology framework. In order to reduce some of the ambiguity, a more
formal description along with guidelines for interpretation and use of the current set of Boxology elements seems
warranted.

7. Conclusion and Future Work

Despite many open questions and challenges towards generative AI techniques, LLMs are widely used in a variety
of applications nowadays. To this end, combining data-driven approaches with knowledge-based techniques is a
promising development to address these challenges. In this paper, we propose new design patterns for modular LLM-
based neuro-symbolic systems to be included in the design pattern approach for neuro-symbolic systems as proposed
by van Bekkum et al. [84]. Thereby, we are filling a gap in the classic Boxology framework with respect to the recent
rise of generative AI techniques. To this end, this paper proposes an extension in terms of concepts and patterns to
the set of Boxology elements and patterns as described in earlier work on Boxology [17, 84, 86]. Specifically, our
goal is to make the Boxology framework compatible with the concepts underlaying LLMs and LLM-based neuro-
symbolic systems. Given the fact that many existing, as well as many potential real-world applications are based
on this disruptive AI paradigm, the extension provided within this paper can be considered a substantial conceptual
update allowing to maintain the Boxology framework’s relevance in the years to come.

In future work, we plan to further explore the usability and benefits of the updated Boxology and its design pat-
terns in domains adjacent to LLM-based neuro-symbolic systems, such as generative AI systems without symbolic
AI attached and multi-modal generative AI systems. Moreover, we anticipate the need to further extend and deepen
the Boxology framework itself. Temporal or recurring/iterative aspects, for example, have not yet been taken into
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account and can currently not be visualised adequately in this respect. Our current investigation has also shown that
the current concept naming, concept labelling and some of the formalisation of the Boxology could benefit from
critical review and in-depth revisiting. The importance of representing or modelling datasets, for example, may be
taken into account in future specifications of particular subtypes of instances and models. Finally, we consider a
future use of graphical tools for the Boxology beneficial. In software development, this approach has proven both
efficient and effective and is well known, for example, from the Unified Modelling Language (UML) and visual
programming tools, such as LabView or Scratch. And while our current work is mostly concerned with graphical
representations of design patterns for system design and documentation, the promise of templates, low-code, or
no-code development, seems also an appealing field of research for the future.
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