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Abstract. Recent position papers have proposed that the traditional BPM (Business Process Management) lifecycle must be 

revisited considering generative AI advances, specifically by investigating how LLMs (Large Language Models) can assist 

various phases of the lifecycle. Inspired by that call to action, this paper reports on a series of experiments on how OpenAI’s 

GPT-4 responds when querying the content of BPMN diagrams, as potential support for the Analysis phase of the BPM lifecy-

cle. We are particularly interested in how BPMN content - typically available in enterprises that adopted the BPM lifecycle - 

should be exposed to LLM services, therefore we comparatively experiment with diagrams provided as XML serializations or 

as tool-specific RDF serializations. This is a comparison between a standard serialization characterized by intricate cross-

referencing that compensates for the XML rigid hierarchical structure and the “semantic graph” view of RDF that is open-

ended in terms of semantic annotation and can be serialized as sequences of statements that resemble natural language. The 

quality of the answers is assessed using the RAGAs (Retrieval Augmented Generation Assessment) framework. 
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1. Introduction 

The paper reports on continuous experimentation efforts with how selected Large Language Models 

(LLMs) services interpret Business Process Model and Notation (BPMN) models exposed in a variety 

formats – as standard XML serializations or as non-standard tool-specific RDF graphs. This work can 

inform how we engage with an AI-powered version of the Business Process Management (BPM) lifecy-

cle [1], leveraging augmentations made possible by LLM services for certain phases of the lifecycle. 
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For the experiments reported in this paper, the GPT-4 model of OpenAI accessed via its API was the 

targeted service. 

BPMN remains the dominant standard for documenting processes, predominantly relying on XML 

for diagram serializations, a variety of schemas being available for this – e.g., XPDL, BPEL-WS, BPMN 

XML, ADOXML. A large diversity of process-aware systems or engines [2] have been built on such 

XML schemas to parse process descriptions. However, in the context of semantics-driven engineering 

formulated by [3] the requirement of process understandability becomes just as relevant as process in-

stantiation and execution; moreover, process instantiation must sometimes be contextualized by a se-

mantic layer available in the form of knowledge graphs. Towards such needs, the introduction of RDF 

(Resource Description Framework) encodings of BPMN content brings new semantics-oriented capa-

bilities, although such representations are not yet widely adopted and are tool-specific: some examples 

are the Bee-Up modeling tool [4] and various demonstrators reported by the literature [5]. 

Our research explores the use of XML and RDF serializations of BPMN with generative Artificial 

Intelligence (GenAI). The experiments harness the LLMs provided by OpenAI – in this report, GPT-4. 

By targeted prompts, we probe various aspects of selectively designed BPMN exemplars, to see how 

RDF compares with XML in facilitating interpretation of process descriptions, despite it not providing 

a standard vocabulary such as those available to the XML schemas for process descriptions. The adop-

tion of knowledge graphs as process storage and BPMN knowledge structures is still an experimental 

proposition in artifact-oriented literature [5,6], but it allows us to explore the potential of RDF to facili-

tate dialogue for process analysis via generative AI, beyond the XML export treatment of having BPMN 

as a closed world markup data structure. Consequently, we formulate the following research question 

pursued by the experimentation reported in this paper: 

 

RQ1: How does the standard BPMN XML export compare with the RDF export available in the Bee-

Up modeling tool, when exposed to an LLM service tasked with answering natural language queries on 

process descriptions? The queries must target both the identification of construct types and the naviga-

tion of chains of relationships in realistic complex examples, complete with labels and involving inter-

linked diagrams (i.e., subprocess).   

RQ2: What are the outcomes of this comparison for a diversity of minimalist BPMN patterns involv-

ing: (a) the most used BPMN constructs – tasks, events, gateways, pools - cf. recent literature investi-

gating the prevalence of BPMN constructs in real collections of process descriptions [7]; (b) non-explicit 

labels to prevent the LLM from extrapolating narratives from the textual tokenized labels without look-

ing at the process structure itself. 

 

To foreshadow the paper findings, computed scores suggest that RDF representations of BPMN (in-

cluding non-visual content such as subprocess links) provide a more open-ended and relationship-aware 

approach to LLM process interpretation, compared to more rigid XML serializations relying on intricate 

cross-referencing across the Document Object Model tree confined to a closed-world schema. Numeri-

cal outcomes on specific process patterns will be discussed on a case-by-case basis in Section 4. 

The LLM used for the experimentation reported in this paper is OpenAI’s GPT-4, as our current focus 

is on varying the process description format. Future works will also vary the LLM services relevant for 

these research questions. 

This research aligns with a current stream of investigation into the capability of AI to engage with 

conceptual models [8], thus also contributing to a meta-objective of refining an evaluation protocol on 

LLM suitability to model interpretation. The paper furthers the investigation into how LLM services can 

process serialized business process models, building upon initial prompting strategies that we have 



reported in a conference scope in [9]. The comparative analysis in this version extends across a more 

diverse set of scenarios, thereby expanding the representativeness and insights of the findings, based on 

a more refined experimentation design. 

We focus on process serializations, rather than images, because most BPMS (Business Process Man-

agement Systems) or BPA (Business Process Automation) platforms and services rely on serializations 

for process repositories and model interchange, as they require deterministic interoperability or execu-

tion. The introduction of image recognition capabilities by the OpenAI’s GPT-4 model significantly 

enhances the multi-modal interaction possibilities [10], enabling a more holistic approach to understand-

ing and interacting with BPMN models. However, visualization cannot fully grasp a process description 

– many details relevant to process analysis do not manifest on a visual level (e.g., data attributes and 

links between diagrams). 

The paper is organized as follows: in Section 2, we establish the problem scope in the context of the 

BPM lifecycle based on our reading of recent literature. Next, Section 3.1 explains the structural and 

syntactical differences between XML and RDF, Section 3.2 summarizes the model exemplars used in 

the experiments and Section 3.3 details the experimental setup. The core findings of our experimental 

study, along with our interpretation are reported in Sections 4.1 and 4.2, where the first analysis is on a 

full complex example and the latter focuses on minimalist BPMN patterns that are left unexplicit to 

force the LLM to develop its interpretation independently of the textual labeling found in diagrams. 

Section 5 synthesizes the results and connects them to broader implications. Concluding this study, Sec-

tion 6 summarizes the findings and maps out directions for future exploration. 

2. Large Language Models and the BPM lifecycle 

Motivated by the need to revisit the BPM lifecycle through the lens of the capabilities of LLMs [11], 

our investigation checks for the suitability of LLMs - in this paper OpenAI’s GPT-4 model - for the 

semantic querying of procedural knowledge available in BPMN formats. The process analysis phase of 

the BPM lifecycle has traditionally relied on process queries by various means developed over the years: 

graph queries [5,6], formal languages [12], visual grammars [13]. Retrieval of information from BPMN 

models can of course be performed by visual analysis due to the diagrammatic nature of the content, 

however process queries are called to provide automatable mechanisms that can also be executed over 

process repositories. On the other hand, in our work we use smaller, even minimalist examples, to assess 

the LLM suitability as a replacement for process querying – therefore no repository scalability concerns 

are raised in this study, as we are focusing on isolating certain workflow patterns and commonly used 

BPMN constructs. 

The phases of the BPM lifecycle revisited in relation to LLMs radically depart from the conventions 

of pre-GPT process analysis tools. Recent works [11] draw attention to how these models can redefine 

how we think about the phases of the BPM lifecycle: in the process identification phase, LLMs cut 

through the clutter of unstructured data: they do not just find information, they can gather workflow 

knowledge – moving into process discovery, the influence of GenAI can enhance process mining frame-

works. Traditionally tethered to XML event logs, RDF can push graph-based process mining [14]. When 

it comes to querying processes, where this paper’s focus lies, the traditional XML frameworks and 

XPath/XQuery-based retrieval are now over-hauled by multi-modal AI [15] with their computer vision 

capabilities. Yet, reliance on computer vision has its limits and must be complemented by a semantic 

serialization layer to also expose non-visual aspects that remain semantically relevant – e.g., links be-

tween different models (such as RACI responsibilities on task level) or data attributes (e.g., task costs). 



In the redesign phase, AI can advocate changes, using code generation on serializations to apply work-

flow updates. As those updates are implemented, LLMs enrich user interactions with detailed explana-

tions, shifting emphasis from static workflow sequences to dynamic conversational choreographies. 

During the monitoring phase, LLMs are not confined to data display, as they can interpret and analyze 

data. 

The current report focuses on process querying and interpretation, crucial stages in process analysis, 

that require question-answering mechanisms and the capacity to draw inferences from the process se-

mantics. As AI pushes the boundaries of BPM, recent technological proposals change the way processes 

can be analyzed. The BPMN2KG initiative [5] illustrates the conversion of BPMN 2.0 models – typi-

cally expressed in XML – into RDF-based knowledge graphs and marks a different view on the instan-

tiation of process models. Similarly, another conversion tool [6] allows BPMN XML formats to morph 

into Neo4J labeled property graphs (LPG), providing an alternative graph representation that adheres to 

the BPMN 2.0 vocabulary.  

The work in [16] laid an early foundation by exploring process querying methods and applications in 

BPM, establishing benchmarks that later studies would build upon. Furthermore, [13] ventured into the 

application of LLMs for textual analyses within BPM, demonstrating that GPT-4 can effectively derive 

both imperative and declarative process models from natural language descriptions – a significant ad-

vance for process querying. Shortly thereafter, analyzing the effectiveness of ChatGPT in generating 

and deciphering diverse conceptual models, [8] suggested certain operational nuances that influence 

model interpretation. Building on these foundational insights, [17] extends earlier research by not only 

confirming the viability of LLMs for textual analysis in BPM, but also by operationalizing these capa-

bilities into a comprehensive process modeling framework. It takes a step further by automating the 

transformation of textual descriptions into standardized process models, such as BPMN and Petri nets. 

Another investigation, this time on prompt engineering for BPM [18], underscored the critical im-

portance of prompt design for obtaining consistent and reliable outputs from LLMs. Similarly, [19] 

reinforces the idea that prompt customization is key for enhancing BPM outcomes and expanding do-

main knowledge coverage, with LLMs suggesting missing concepts from business process models (se-

rialized using XML, XPDL and XMI) and converted into CSV files for further processing. Comple-

menting these developments, recent research [20] explores whether LLMs can substitute for domain 

experts by evaluating enterprise models and highlights that measuring certain quality aspects – such as 

completeness – remains challenging due to the inherent subjectivity and variability in certain models.  

Expanding the scope further, [21] scrutinized the intersection of GPT technology with RPA, drawing 

attention to potential security and compliance challenges as enterprises increasingly incorporate AI-

driven process automation. The integration of GPT-3.5 Turbo with Lean Six Sigma 4.0 methodologies 

[22] revealed promising avenues for upgrading customer service and enhancing real-time decision-mak-

ing processes. Moreover, [23] proposed a forward-thinking strategy that involves merging LLMs with 

knowledge graphs, an approach that is particularly promising when these graphs are designed around 

diagrammatic procedural knowledge effectively serialized as semantic networks. 

While extensive research has concentrated on the performance of LLMs on unstructured text (such as 

generating and refining business process models from textual descriptions [24] or extracting process 

information from text [25]), their ability to query structured serializations – specifically, RDF and XML 

serialization of BPMN process descriptions – remains largely underexplored. 

This gap is significant, given the essential role that structured process representations play in BPM – 

traditionally, as storage format for process automation and analysis engines (hence the XML dominance) 

but now more relevant as semantically open-ended knowledge assets (hence our focus on RDF). Even 

though prior work [26] examined the performance of LLMs on structured formats such as tabular data, 



data-oriented scenarios differ significantly from those posed by structured BPMN representations (e.g., 

accurately parsing complex workflow patterns or managing intricate cross-references).  

3. Experimental Setup 

At the forefront of our study is Bee-Up 1.7 [4], a core component of the OMiLAB Digital Innovation 

environment [27], known for its role in semantically enriching both standard-based and domain-specific 

models and languages, allowing the exploitation of inter-model links as semantic bridges between a 

diversity of modeling languages – e.g., BPMN, UML, DMN, EPC and Petri Nets. 

SAP Signavio [28] was used as a representative for the tools providing the standard BPMN 2.0 XML 

serialization. 

Both tools provide image exports as PNG and other image formats, however the experimentation 

reported in this paper focuses on the XML vs. RDF exports comparison, for the reasons already ex-

plained in the previous section. 

3.1. Serialization comparison 

The structural differences between the XML and RDF serializations are briefly explained here based 

on the sample diagram in Figure 1, which shows a minimal subprocess linked to a main process with 

pool and lanes containment, as well as labeled connectors outgoing from a gateway. 
 

 

Fig. 1. BPMN exemplar that includes a subprocess link. 

Figure 2 provides an overview of the hierarchical, DOM-based structure available in the standard 

serialization, conforming the standard BPMN 2.0 XML schema available in Signavio. 

Because the hierarchical decomposition does not reflect the visually directed graph structure of the 

diagram, an intricate network of cross-references across XML tags must preserve all relevant relation-

ships. Some of these are attribute-attribute matches (e.g., to specify containment between a pool and 

the process inside it), others are attribute-tag matches (e.g., to specify containment between a lane and 

its flow elements, but also visual connectors referencing their connector heads), one-to-one (e.g., an 

arrow can have one starting point and one ending point) or one-to-many matches (e.g., a gateway has 

multiple outgoing connectors). Only a few relationships are expressed by the implicit parent-child XML 

nesting that would be familiar to a basic parser reading such content sequentially: a process containing 

lanes and a subprocess containing its contents. XML parsers navigate such complex cross-references as 



prescribed by the governing XML schema, but process interpretation by a linear token-based parser 

reading it as textual content requires frequent back-and-forth jumps based on heterogeneous matching 

rules. 
 

 

Fig. 2. Cross-references in the DOM hierarchy of the standard BPMN XML serialization (based on the exemplar in Figure 1). 

Comparatively, Figure 3 showcases the graph structure of an RDF serialization in Bee-Up, derived 

from transformation patterns initially formulated in [29].  

The graph edges represent predicates that can be derived from various ways in which diagrammatic 

descriptions can express relationships: visual connectors (i.e., sequence flows, message flows), hyper-

links (e.g., links to subprocesses), containment relationships (to lanes, pools), data attributes editable in 

the tool (e.g., simulation attributes, connector annotations) and also open-ended properties that can be 

attached as annotations to any diagrammatic element (not used in this example). 

Some visual connectors must emulate the “property graph” approach – i.e., graph edges having their 

own properties – therefore the outgoing arrows from the XOR gateway, which need to be labeled dif-

ferently are highlighted as a reification pattern (the Bee-Up export does not currently employ RDF-star 

[30] which could simplify this further). The connector is reified to hold any attributes that are distinc-

tively set for each instance of that connector. SPARQL rules and filters can be used to conveniently 

query the connectors in either the simple (non-annotated) form, or in the reified (annotated) form, de-

pending on the process query requirements. 



Subprocesses are isolated as separate named graphs, however, linked within the same RDF dataset. 

Leveraging such patterns, an RDF export is available in the Bee-Up modeling tool, with some termino-

logical aspects not detailed here (tool-specific namespaces). On the top of the figure, TriG/Turtle state-

ments show the process as it is serialized and grouped by the diagram graph where the statements belong. 

Many other attributes can be exported, not visible here as they are not relevant to semantically-oriented 

process queries (e.g., visual position) and are also filtered out by our component that delivers the graphs 

to GPT-4. 

 

Fig. 3. Graph structure for the RDF serialization (based on the exemplar in Figure 1). 

3.2. Model exemplars used in experiments 

We focused our experiments on two kinds of BPMN models: (1) a realistic model of a main process 

linked to a subprocess, illustrated in Figure 4; (2) a set of minimalist process patterns (Figures 5-6) that 

are labeled non-explicitly to allow us to probe process structure interpretation while avoiding any chance 

of hallucinating a business scenario narrative out of textual labels. We only showcase in Figures 4-6 the 

Bee-Up variants, having equivalent elements to the Signavio variants. 

The realistic process model in Figure 4 depicts the logic of an RPA bot planned to mimic the human 

actions for online shopping, as well as the data requirements for the bot to accomplish such a task and 

the “human in the loop” interactions – including credentials needed to perform some authentication steps 

on behalf of the human.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. BPMN diagrams depicting the main BPMN process (left) and the “Bot authentication microflow” subprocess (right) 

designed in Bee-Up 1.7  



The examples in Figures 5-6 follow a different strategy: only generic labels are visible, forcing the 

LLM to look into the process structures instead of extrapolating scenario narratives inspired by labels, 

as this was detected as an occasional behavior on label-rich diagrams. This also helps us assess the 

structural and flow-based “reasoning” abilities that may manifest, driven by the different types of con-

nectors and the semantics they carry – sequence flows, message flows, data associations. 
 

 

Fig. 5. Minimalist process modeling patterns in BPMN. 

 

Fig. 6. Collaborative and coordinated process patterns in BPMN. 



3.3. Experimental framework and GPT model integration 

The key feature leveraged in Bee-Up is the RDF export, which builds on previously introduced dia-

gram-to-named graphs transformation patterns [29]. To parse and filter the RDF outputs as semantic 

graphs, we turned to Ontotext GraphDB 10.8 [31] after stripping away irrelevant attributes from the 

RDF metadata. 

Ontotext GraphDB expands the standard SPARQL querying capabilities with OpenAI-oriented func-

tions such as gpt:ask()1 that engages directly with the selected GPT model (specifically for this work, 

GPT-4) while exposing to it a convenient subgraph extracted from the RDF repository. The structure of 

the utilized query is shown below, filtering specific types of nodes and edges that are relevant for the 

process description (and not for its visualization): 

# prefixes removed for concision 

# <…> are placeholders for relevant graph edges or node types, as well as the user 

prompt 

SELECT ?answer ?rdfSer WHERE { 

SELECT (helper:rdf(helper:tuple(?x, ?prop, ?o)) AS ?rdf)  

WHERE { 

  GRAPH :<graph_name> { 

   ?x a ?type ; ?prop ?o . 

FILTER(?type IN (<RDF_class_identifier1>,  

<RDF_class_identifier2>, 

<RDF_class_identifier3>, …)) 

   FILTER(?prop IN (<property1>, <property2>, <property3>, …)) 

  } 

 } 

} 

BIND(helper:serializeRDF(?rdf) as ?rdfSer) 

?answer gpt:ask (“prompt_template+user_question” ?rdf)} 

 

We use zero-shot learning out of the prompting techniques discussed by the literature [32,33] – where 

the GPT model is prompted to perform a task without being provided any prior examples – and incor-

porate a “persona” prompt template. Specifically, in the SPARQL query, we pass this prompt template 

to the gpt:ask() function along with the actual question. This strategy defines GPT-4’s role as a question-

answering assistant and sets a strict format for its responses, keeping them brief and anchored in the 

provided content (namely, the semantic triples). This minimizes the ambiguity, possible hallucinations 

and variability in the generated outputs, so the evaluation of these responses is simplified. Importantly, 

while our instructions clearly define the style and format of the generated response, they refrain from 

any explanations of the retrieved content, allowing GPT-4 to independently derive its meaning. 

In order to boost performance on knowledge-intensive tasks, the authors of [34] introduced a Retrieval 

Augmented Generation (RAG) framework that pairs a search component (called a retriever) with an 

LLM, allowing the system to first identify relevant contextual information and then generate context-

aware responses – a concept we also leverage in order to request responses based on the BPMN content. 

We deployed a local environment (namely, a Weaviate2 instance for vector storage) to serve as our 

vector database for the process information, which integrates smoothly with the LangChain3 compo-

nents we use to load the BPMN XML file. We utilize the same prompt template – used to query the 

 
1 https://graphdb.ontotext.com/documentation/10.8/gpt-queries.html#gpt-ask-retrieve-a-single-answer 
2 https://weaviate.io 
3 https://www.langchain.com 



RDF graph database – and integrate the retriever, the prompt, as well as the GPT model into a so-called 

RAG pipeline. Each user query is processed through a predefined prompt template and passed to the 

retriever, which extracts the process model content to be provided as context to GPT-4. Both the answers 

and the associated context retrieved for each prompt are stored for subsequent evaluation. Regarding 

GPT-4’s configuration, we maintained a consistent setup across all platforms, including both GraphDB 

and our Python scripts4: 

 
Temperature: 1 

Embedding model: text-embedding-ada-0025 

Max. tokens: 8192 tokens 

Top_p: 1 

Frequency and Presence penalty: 0 

4. Evaluation and Experimental Outcomes 

During April-July 2024, followed by revision refinements during October-December 2024, we exam-

ined responses produced by GPT-4 to a variety of prompts probing its BPMN-based process analysis 

capabilities. For clarity, we refer to the RDF variant by “Case I” and to SAP Signavio exports by “Case 

II”. This approach is not intended to highlight limitations within any specific tool, but to explore the 

differences and potential insights that different serialization formats may reveal. 

In the preliminary stages of our experiments, the tools deployed in the aforementioned cases demon-

strated adeptness in responding to straightforward inquiries, such as identifying participants or listing 

the sequence of steps in the provided processes. These queries, predominantly aiming at recognizing 

basic BPMN elements, established a baseline of competence. 

Using the Retrieval Augmented Generation Assessment (RAGAs) framework [35], we compare the 

answers generated by the LLM from both cases against a manually crafted reference/ground truth, fo-

cusing on four key metrics: Response Relevancy6, Factual Correctness7, Answer Semantic Similarity8 

and a modified version of the Faithfulness9 metric. Response Relevancy, initially known as “Answer 

Relevance”, measures how well the generated answer addresses the question posed in each experiment, 

independent of its factual accuracy, and imposes penalties for extraneous information. Factual Correct-

ness (“Answer Correctness”) evaluates the factual consistency between the generated answer and the 

ground truth (which is the gold standard against which the generated answers are compared), by decom-

posing both into discrete claims and applying natural language inference techniques to measure their 

alignment. Within the experiments, we set the Factual Correctness’s mode parameter to “precision”, 

atomicity to “low” and coverage to “high”, in order to apply an entity coverage that is both granular and 

extended over the full context. Answer Semantic Similarity, previously known as “Answer Similarity”, 

focuses on the extent to which the meaning of the generated answer matches the meaning of the refer-

ence, even if the wording is different. Unlike Factual Correctness, this metric first converts both the 

generated answer and the ground truth into vectors, then computes the cosine similarity between them 

to assess their shared semantic content rather than exact phrasing. On top of these metrics, we updated 

 
4 https://github.com/Damarissss/structured-text_RAG-pipeline_RAGAs/tree/main 
5 https://openai.com/index/new-and-improved-embedding-model/ 
6 https://docs.ragas.io/en/stable/concepts/metrics/available_metrics/answer_relevance/ 
7 https://docs.ragas.io/en/stable/concepts/metrics/available_metrics/factual_correctness/ 
8 https://docs.ragas.io/en/stable/concepts/metrics/available_metrics/semantic_similarity/ 
9 https://docs.ragas.io/en/stable/concepts/metrics/available_metrics/faithfulness/ 



Faithfulness to get a better sense of how well the generated answer matches the retrieved context. Nor-

mally, Faithfulness measures the proportion of claims within the generated response that are substanti-

ated – i.e., inferable – based on claims present in the provided context. But since our contexts are struc-

tured (RDF triples and XML), while the generated answers are unstructured (textual descriptions) – each 

format organizing and representing information differently – comparing them directly can become chal-

lenging. To address this, we use OpenAI’s text-embedding-ada-002 embedding model to convert both 

the answer and the retrieved structured context into vector embeddings, then compute the cosine simi-

larity between them and average the results (rounded to two decimals) – much like how Answer Seman-

tic Similarity is calculated. This new approach, which we call “Semantic Faithfulness”, offers a clearer 

evaluation on whether the semantic content of the claims in the generated answer is meaningfully sup-

ported by the retrieved contextual information. 

In these comparative LLM experiments, automated metrics provide a “sensor” instrument to augment 

human interpretation of the response deviations, and also to distinguish between different types of de-

viations (e.g. question misinterpretation versus inference insufficiencies). This approach aligns with re-

cent literature [20] in the field of model quality assessment using LLMs, where the authors advocate for 

the use of LLM-based evaluation patterns that integrate quality frameworks and emphasize that such 

techniques can aid human raters or serve as scaffolding in quality validation. As mentioned in the intro-

duction, it is also a secondary (meta)goal of this work to refine such an evaluation protocol that can be 

reused for queries on larger scale content, where direct human interpretation is less feasible. Moreover, 

this opens opportunities and potential for instructional, corrective feedback loops automated based on 

the computed metrics. 

The evaluation process for the BPMN models serialized in RDF began by loading the Turtle-serialized 

process description and filtering out triples that hold to no semantic relevance (visual properties). The 

context is paired with a specific question, its corresponding ground truth and GPT-4’s answer. An eval-

uation dataset is thus constructed from these components. Subsequently, evaluation metrics from the 

RAGAs framework, along with a custom semantic faithfulness measure, were applied to assess the gen-

erated responses. The results were exported as a JSON file for further analysis. 

Meanwhile, for BPMN XML, the generated answers are evaluated using the same metrics, with the 

retrieval process – explained in detail in Section 3.3 – providing the necessary context for each query. 

Just as in the RDF case, these outputs are compiled into a dataset and exported as a JSON file containing 

the user input, retrieved contexts, response, reference and the four metrics. 

The XML process serialization offers a standard vocabulary, not only a standard structure, XML being 

traditionally a data interchange format. The RDF export of BPMN is only standard in the structural 

sense – as a directed semantic graph standard – and not as a process description vocabulary, for which 

intuitive tool-specific terms are generated by Bee-Up, derived from the concept labeling that is pre-

scribed on the metamodel level. Therefore, LLMs may treat the RDF variant as a semantic network that 

happens to contain edges whose labels describe workflows, while the XML variant can be recognized 

upfront as a standard interchange format that is widely available in training corpora and Web content. 

We selected test queries to span a range of retrieval cases of different complexities: from simple 

element enumeration/type distinctions to navigating conditional branching and inter-pool communica-

tion, collecting data annotations (e.g., time, costs) and for the realistic example, also the navigation of 

the subprocess hyperlink. 

The strategy was rooted in a perspective based on our metamodeling experience, which is common 

to both the XML and RDF serializations – in the sense that they explicitly distinguish node and relation 

types, containment and data annotation; human interpretation of any BPMN diagrams cognitively relies 

on grasping these distinctions and, based on them, navigating multi-hop relationships within directed 



graphs. Experiments are also guided by the BPMN usage trends reported by [7], where the most common 

constructs found in several large collections of BPMN diagrams were identified – our battery of exam-

ples does not yet cover all possible constructs, as we are prioritizing based on such usage rankings. 

We also diversified prompts according to the business process management perspectives – i.e. looking 

at control flows, communication/collaboration perspective and the data perspective, as well as subpro-

cess navigation between different diagrams as expected in a realistic process repository where not all 

information is expressed by a single diagram. To avoid erroneous interpretations, we tried to formulate 

the queries as explicitly as possible, consistently using standard BPMN terminology - for instance, re-

ferring to process steps as tasks. 

Our findings are presented in the following tables, with the highest metric value highlighted in bold, 

accompanied by a detailed discussion. Occasional explanations of how the metrics are calculated will 

be provided for certain scenarios; in some cases, the scores are sufficiently self-explanatory. Given the 

probabilistic nature of LLMs, multiple test iterations were conducted to identify the most consistently 

retrieved responses, regardless of variations in phrasing or style. 

Sections 4.1 and 4.2 will discuss the most relevant prompts where meaningful differences can be 

highlighted, whereas less interesting prompts, with inconclusive results or minimal variation, can be 

consulted in the appendix. 

4.1. Prompts on the explicit realistic example 

Table 1 

Comparative analysis of GPT-4’s responses on task and subprocess enumeration in the “User coordinated bot (at Client)” 

pool (Figure 4) 

Prompt 
Enumerate all tasks and all subprocesses inside ‘User coordinated bot’ pool, sub-

sequent to the task labeled ‘Add product to cart’. 

Criteria 

Case I 

(response generated by Ontotext GraphDB 10.8 

using OpenAI’s GPT-4 model on RDF formatted 

data) 

Case II 
(response generated by OpenAI’s GPT-4 model 

via API on BPMN XML formatted data) 

Response 

The tasks and subprocesses inside ‘User coordinated 

bot’ pool, subsequent to the task labeled ‘Add prod-

uct to cart’ are the following: ‘Edit quantity’, ‘Bot 

authentication microflow’, ‘Authenticate user of 

failed authentication’, ‘Provide delivery & invoicing 

data’, ‘Request billing’, ‘Trigger payment with 

saved payment method’, ‘Approve online payment’, 

‘Look for email from merchant’, ‘Save invoice’, 

‘Generate order confirmation SMS’, ‘Generate fail-

ure SMS’, ‘Track order’, ‘Notify delay’, and ‘Leave 

feedback’. 

The tasks and subprocesses from the ‘Robot in 

browser’ lane that are subsequent to the task labeled 

‘Add product to cart’ are ‘Edit quantity’, ‘Provide 

delivery & invoicing data’, ‘Request billing’, ‘Trig-

ger payment with saved payment method’. 

Ground 

truth 

All tasks and all subprocesses inside ‘User coordinated bot’ pool, subsequent to the task labeled ‘Add prod-

uct to cart’ are: ‘Edit quantity’ (belonging to the subprocess labeled ‘Repeat for each desired product’), ‘Bot 

authentication microflow’ (subprocess), ‘Provide delivery & invoicing data’, ‘Notify user of failed authen-

tication’, ‘Request billing’, ‘Trigger payment with saved payment method’, ‘Approve online payment’, 

‘Look for email from merchant’, ‘Save invoice’, ‘Generate order confirmation SMS’, ‘Generate failure 

SMS’, ‘Track order’, ‘Leave feedback’, ‘Notify delay’. 

Response 

relevancy 
0.94 0.81 

Factual 

correctness 
0.93 0.12 



Semantic 

similarity 
0.99 0.86 

Semantic 

faithfulness  
0.82 0.76 

 

Looking at the results in Table 1, Case I (RDF formatted data) and Case II (BPMN XML export) 

behave rather differently. In the first case, where we filter the RDF triples with the SPARQL query, 

GPT-4 provides the user with an almost complete and correct answer that also closely matches the 

ground truth – evidenced by high relevancy, correctness and semantic similarity scores. Most of the 

important details from the structured context are properly reflected within the generated response, except 

for the expanded subprocess labeled “Repeat for each desired product” – where the tasks “Add product 

to cart” and “Edit quantity” are displayed – revealing a certain limitation in coverage and a slightly 

lower score for semantic faithfulness. 

In contrast, the second case yields a partial response, enumerating only the first few tasks following 

the task labeled “Add product to cart” within the requested pool. Since the utilized BPMN XML file is 

quite large – containing more than 20000 tokens – it exceeds the input size that GPT-4 can handle at 

once. To manage this, we automatically split the file into smaller, overlapping sections of text called 

chunks (using RecursiveCharacterTextSplitter10). Each chunk includes a bit of content from the begin-

ning and end of the neighboring chunks, so that important contextual information is not lost during the 

split. By default, the system retrieves 4 chunks when answering a question, which falls within a safe 

limit for the GPT-4’s input. Nonetheless, for lengthy process descriptions, where tasks and subprocesses 

are distributed throughout, this default behavior can result in incomplete responses, which is one of the 

possible reasons that could explain the missing information in some of our test cases (see Table 1, Case 

II). To improve this, we note that it is possible to combine manual tag removal with automated text 

splitting or to increase the number of retrieved chunks to capture more context, while still staying within 

the input limits of the utilized model. 

Another observation about Case II is that GPT-4 failed to capture the subprocesses embedded within 

the BPMN model, focusing solely on task-type elements and contributing to an incomplete representa-

tion even of this small portion of the process that the LLM retrieved. 

 

Table 2 

Comparative analysis of GPT-4’s responses on simultaneous task execution (Figure 4) 

Prompt 
Can the tasks ‘Notify user of failed authentication’ and ‘Provide delivery & in-

voicing data’ be executed simultaneously and why or why not? 

Criteria Case I Case II 

Response 

Based on the model, the tasks ‘Notify user of failed 

authentication’ and ‘Provide delivery & invoicing 

data’ cannot be executed simultaneously. This is be-

cause these tasks are conditioned by different out-

comes of the ‘Authentication_successful?’ gateway. 

The task ‘Notify user of failed authentication’ is trig-

gered when authentication is unsuccessful, whereas 

the task ‘Provide delivery & invoicing data’ is trig-

gered when authentication is successful. Thus, these 

tasks target opposing scenarios and cannot occur at the 

same time. 

The tasks ‘Notify user of failed authentication’ 

and ‘Provide delivery & invoicing data’ cannot be 

executed simultaneously. This is because in the 

given context, these tasks are part of a sequence 

flow in a business process model, which means 

they are executed one after the other, not concur-

rently. The ‘Notify user of failed authentication’ 

task is executed when the authentication is unsuc-

cessful, while the ‘Provide delivery & invoicing 

data’ task is executed after successful authentica-

tion. 

 
10 https://python.langchain.com/v0.1/docs/modules/data_connection/document_transformers/recursive_text_splitter/ 



Ground 

truth 

No, the tasks ‘Notify user of failed authentication’ and ‘Provide delivery & invoicing data’ cannot be exe-

cuted simultaneously because they follow an exclusive gateway labeled ‘Authentication successful?’, al-

lowing only one path to be executed. The process either handles a failed authentication or proceeds with a 

successful authentication, but not both. 

Response 

relevancy 
0.99 0.99 

Factual 

correctness 
1.00 0.25 

Semantic 

similarity 
0.97 0.96 

Semantic 

faithfulness  
0.79 0.78 

 

Both responses in Table 2 address the prompt well and capture the overall meaning expected by the 

ground truth, given the high relevancy and semantic similarity values. Although the first part of the 

XML-based answer (Case II) is syntactically and semantically similar to the ground truth, it misses or 

misrepresents key factual details in the following parts of the response – specifically, it fails to fully 

capture the exclusive gateway mechanism, which is the true reason that prevents simultaneous execution 

and not the fact that the tasks are executed one after another. This is also supported by low factual 

correctness. Regarding Case I, most key details in the process are correctly captured, even though minor 

discrepancies exist. One such discrepancy emerges from how resources are named and represented in 

the RDF context. Particularly, process elements (subjects and objects) are identified using full IRIs (In-

ternationalized Resource Identifiers) – long, unique web-like addresses. These IRIs are typically ex-

panded from a shorthand prefix. For example, the prefix “:” refers to the namespace 

“http://www.omilab.org#”. Therefore, a snippet like: 
<http://www.omilab.org#Task_BPMN-19347-Provide_delivery_+_invoicing_data> a 

<http://bee-up.omilab.org/rdf/1_7#o_Task_BPMN> 

which identifies the task “Provide delivery & invoicing data” as an instance of a BPMN task type, can 

slightly affect the vector representation, especially when compared to the more natural phrasing used in 

generated answers, leading to small mismatches in the cosine similarity (even if the answer is semanti-

cally correct) when calculating the semantic faithfulness. Case II reflects comparable alignment with its 

context, despite the variations in how the information is structured. 

 

Table 3 

Comparative analysis of GPT-4’s responses on “Bot authentication microflow” (subprocess) description under a condition 

(Figure 4) 

Prompt 
What happens inside the corresponding subprocess if the user credentials are not 

valid? 

Criteria Case I Case II 

Response 

If the user credentials are not valid, the subprocess 

in this context diverges at the Exclusive Gateway 

“Credentials valid?”. It will then execute the Task 

“Check for multiple failed attempts”, followed by 

another decision at “Attempts under limit?”. If the 

number of attempts is under the limit a grace period 

would be given for another attempt otherwise, the 

“Lock account” task runs, leading to “Increment 

failed attempts counter”, and “Notify user of account 

status” tasks. A notification is then sent out, marking 

If the user credentials are not valid, the process di-

verges at the “Credentials valid?” gateway. The pro-

cess then moves to the “Notify user of failed authen-

tication” task, where the user is informed about the 

failed authentication attempt. 



the end of the flow with the End Event “Failed au-

thentication”. 

Ground 

truth 

If the user credentials are not valid, the system checks for multiple failed attempts. If there are no more 

attempts, the account is locked, the failed attempts counter is incremented, the user is notified of the account 

status and the subprocess ends with a failed authentication. If the attempts are under limit, the user is granted 

a grace period for one more try before lockout and if the user accepts the additional authentication attempt, 

the system returns to the earlier task of retrieving user credentials. 

Response 

relevancy 
0.91 0.91 

Factual 

correctness 
0.87 0.33 

Semantic 

similarity 
0.93 0.89 

Semantic 

faithfulness  
0.77 0.78 

 

The part “inside the corresponding subprocess” from this prompt (Table 3) is designed to test whether 

the model can identify the correct subprocess – namely, “Bot authentication microflow” – based on a 

clear condition, without being explicitly told. Both responses do recognize it by mentioning the exclu-

sive gateway, “Credentials valid?”, which represents the central divergence inside the subprocess. How-

ever, while the RDF-based answer in Case I accurately goes further by elaborating upon tasks such as 

checking for multiple failed attempts, granting a grace period and locking the account, the XML-based 

answer in Case II stops prematurely at “Notify user of failed authentication” task, which is not even part 

of the subprocess in question, leading to a much lower factual correctness score for Case II. 

Case II's high semantic similarity score may seem surprising given its factual incompleteness, but it 

can be explained by how the metric is calculated. Semantic similarity is determined by comparing vector 

embeddings of the generated answer and the ground truth, focusing on the overall meaning rather than 

every fine-grained detail. OpenAI’s reference documentation [36] provides more insight into how em-

beddings convert text into dense vector representations that capture the semantic essence of the input, 

enabling tasks like semantic search and similarity comparisons. As mentioned before, we use OpenAI’s 

text-embedding-ada-002 [37], which brought a significant performance boost from previous embedding 

models. As a result, even if the answer omitted some parts, its main semantic content remains closely 

aligned with the ground truth – capturing the core idea that the process diverges at the “Credentials 

valid?” gateway and can also follow a failure branch – thus yielding a high similarity score. 

 

Table 4 

Comparative analysis of GPT-4’s responses on cost and execution time of the tasks within a subprocess (Figure 4) 

Prompt 
What are the cost and execution time for every task within the bot authentication 

microflow? 

Criteria Case I Case II 

Response 

The cost and execution time for each task within the 

bot authentication microflow are as follows: ‘Re-

trieve user credentials’ costs 0.01 and takes 2 sec-

onds, ‘Validate credentials’ costs 0.02 and takes 5 

seconds, ‘Check access rights’ costs 0.03 and takes 

6 seconds, ‘Create authentication log’ costs 0.01 and 

takes 1 second, ‘Check for multiple failed attempts’ 

costs 0.01 and takes 1 second, ‘Lock account’ costs 

0.03 and takes 5 seconds, ‘Increment failed attempts 

The bot authentication microflow consists of several 

tasks, each with its own cost and execution time. The 

“Activate bot” task has an execution cost of 0.05 and 

takes 00:00:05 to execute. The “Check for multiple 

failed attempts” task has an execution cost of 0.01 

and takes 00:00:03 to execute. The “Lock account” 

task does not have specified execution costs and time 

in the provided context. The “Check access rights” 

task has an execution cost of 0.03 and takes 00:00:06 



counter’ costs 0.01 and takes 1 second, and ‘Notify 

user of account status’ costs 0.02 and takes 2 sec-

onds. 

to execute. The “Create authentication log” task has 

an execution cost of 0.01 and takes 00:00:01 to exe-

cute. 

Ground 

truth 

The cost and execution time for every task within the bot authentication microflow are: a cost of 0.01 and 

execution time of 2 seconds for ‘Retrieve user credentials’, a cost of 0.02 and execution time of 5 seconds 

for ‘Validate credentials’, a cost of 0.03 and execution time of 6 seconds for ‘Check access rights’ a cost of 

0.01 and execution time of 1 second for ‘Create authentication log’, a cost of 0.01 and execution time of 1 

second for ‘Check for multiple failed attempts’, a cost of 0.03 and execution time of 5 seconds for ‘Lock 

account’, a cost of 0.01 and execution time of 1 second for ‘Increment failed attempts counter’, a cost of 

0.02 and execution time of 2 seconds for ‘Notify user of account status’. 

Response 

relevancy 
0.99 0.99 

Factual 

correctness 
1.00 0.60 

Semantic 

similarity 
0.99 0.96 

Semantic 

faithfulness  
0.80 0.77 

 

Table 4 illustrates a specific example where the GPT model is challenged to extract certain process 

performance metrics from the BPMN process. Both responses grasp the core idea: to detail the cost and 

execution time within “Bot authentication microflow”. Here, Case I accurately lists all eight tasks as 

specified in the ground truth, achieving perfect factual correctness. In contrast, Case II only correctly 

identifies four tasks and even mistakenly includes the “Activate bot” task, which does not belong to the 

subprocess, resulting in a much lower factual correctness score. This difference arises because the XML 

standard uses a closed-world schema, whereas the RDF export offers a more flexible and semantically 

enriched network of associations. 

 

4.2. Prompts on the Non-Explicit Minimalist Models 

Building on the experiments outlined in Section 4.1, we now shift our focus to exploring minimalist, 

non-explicit patterns. Using the same setup and evaluation metrics, we examine the patterns illustrated 

in Figures 5 and 6 to uncover how these streamlined models – represented in RDF and BPMN XML – 

perform under a diversity of queries that include various perspectives, such as temporal understanding, 

participant involvement, interactions and associations. 

Table 5 

Comparative analysis of GPT-4’s responses on simple task sequence identification (Figure 5-a) 

Prompt Identify the tasks in the order described in the process. 

Criteria 

Case I 

(response generated by Ontotext GraphDB 10.8 

using OpenAI’s GPT-4 model on RDF formatted 

data) 

Case II 
(response generated by GPT-4 via API on BPMN 

XML formatted data) 

Response 
The tasks in the order described in the process are A, 

B, and C. 

The tasks in the order described by the process are 

Task A, Task B, and Task C. 

Ground 

truth 
The tasks in the order described in the process are: A, B, C. 

Response 

relevancy 
0.97 0.97 



Factual 

correctness 
1.00 1.00 

Semantic 

similarity 
0.99 0.98 

Semantic 

faithfulness  
0.78 0.74 

 

The prompt “Identify the tasks in the order described in the process” from Table 5 is straightforward, 

asking GPT-4 to sequentially list the tasks from the BPMN model represented in Figure 5-a. Both re-

sponses correctly identify the tasks A, B and C, which accurately match the ground truth, resulting in 

perfect factual correctness. The semantic similarity scores are also very high in spite of minor wording 

differences. The semantic faithfulness scores indicate that the essential context from this pattern is well 

captured; the slight drop in Case II is potentially due to the additional verbosity from the prefix “Task”, 

which slightly alters the vector representation. 

We also tested additional prompts on models from Figures 5-b, 5-e and 6-l, to assess whether GPT-4 

can accurately handle temporal sequencing (as shown in Table 9), recognize branches (Table 10) and 

spatial-temporal queries (Table 11). Since the responses were correct for both data formats in all three 

scenarios – with scores similar to the ones in Table 5 – we have grouped these findings in the appendix. 

 

Table 6 

Comparative analysis of GPT-4’s responses on event identification and their trigger in a taskless sequence, without exempli-

fying possible trigger types (Figure 5-c) 

Prompt 
Identify all the events before the event Z, in the order executed in the process, and 

their trigger. 

Criteria 

Case I 

(response generated by Ontotext GraphDB 10.8 

using OpenAI’s GPT-4 model on RDF formatted 

data) 

Case II 
(response generated by GPT-4 via API on BPMN 

XML formatted data) 

Response 

The events before event Z are, in the order executed 

in the process: “Start Event (BPMN)-35353”, “X”, 

and “Y”. The “Start Event (BPMN)-35353” is initi-

ated by the start of the process. Event “X” is trig-

gered by a message, as well as event “Y”. 

The events before event Z are event Y and event X. 

Event Y is triggered by a message event definition 

with id “sid-8dd832f4-e8e5-4878-b075-

5012f1dfa9af”. Event X is also triggered by a mes-

sage event definition with id “sid-7699c4c7-51aa-

4401-813e-96d2a9cc4835”. 

Ground 

truth 

The events before the event Z, in the order executed in the process, are: Start event, X and Y. The trigger 

for Start is not specified. The trigger for X is a message. The trigger for Y is also a message. 

Response 

relevancy 
0.93 0.92 

Factual 

correctness 
0.40 0.33 

Semantic 

similarity 
0.94 0.94 

Semantic 

faithfulness  
0.79 0.72 

 

Overall, the generated answers in both cases (Table 6) convey the same core meaning as the ground 

truth, given the high semantic similarity scores. However, some key aspects are either missed, misrep-

resented or both. In Case I, the answer correctly identifies the start event along the subsequent events X 

and Y, both triggered by messages (see Figure 5-c), but it also includes an extra detail about the trigger 



of the start event that is not specified in the ground truth. Moreover, since the start event is not explicitly 

labeled in the provided context like the rest of the events, GPT-4 refers to it using the full generic label 

automatically assigned by the modeling tool (i.e., “Start Event (BPMN)-35353”), which differs from the 

name used in the ground truth (i.e., just “Start event”). 

In contrast, Case II’s XML-based response entirely disregards the start event. It also suggests that one 

task triggers the next. Although this interpretation makes sense to some extent, it certainly does not 

match what was expected in the ground truth/reference, leading to an even more significant drop in 

factual correctness. 

 

Table 7 

Comparative analysis of GPT-4’s responses on event identification and their trigger in a taskless sequence, exemplifying pos-

sible trigger types (Figure 5-c) 

Prompt 

Identify all the events before the event Z, in the order executed in the process, and 

their trigger (Cancel, Compensation, Conditional, Error, Escalation, Link, Mes-

sage, Signal, Timer). 

Criteria 

Case I 

(response generated by Ontotext GraphDB 10.8 

using OpenAI’s GPT-4 model on RDF formatted 

data) 

Case II 
(response generated by GPT-4 via API on BPMN 

XML formatted data) 

Response 

The events before the event Z are the “Start Event 

(BPMN)-35353”, event X, and event Y. The Start 

Event (BPMN)-35353 does not have any particular 

triggers, event X is triggered by a message, and event 

Y is also triggered by a message. 

The events before event Z are event X and event Y. 

Event X is an intermediate throw event triggered by 

a message as indicated by the “messageEventDefini-

tion” tag. Event Y is an intermediate catch event also 

triggered by a message as indicated by the “mes-

sageEventDefinition” tag. 

Ground 

truth 

The events before the event Z, in the order executed in the process, are: Start event, X and Y. The trigger 

for Start is not specified. The trigger for X is a message. The trigger for Y is also a message. 

Response 

relevancy 
0.89 0.89 

Factual 

correctness 
0.50 0.43 

Semantic 

similarity 
0.94 0.92 

Semantic 

faithfulness  
0.85 0.75 

 

We tested on the same BPMN model (in Figure 5-c) with another prompt to see if a hint would boost 

the quality of the generated answers. In the initial prompt (see Table 6), we simply asked for the events 

before event Z and their triggers, while in the second prompt (see Table 7), we provided a list of possible 

trigger types (Cancel, Compensation, Conditional, Error, Escalation, Link, Message, Signal, Timer) as 

a hint. Regardless of the clue’s presence, the prompt was correctly answered in Case I that scored high 

in both scenarios (Tables 6 and 7) regarding relevancy and semantic similarity. However, for the second 

case, reducing the ambiguity in what constitutes a trigger, aided GPT-4 to provide more detailed answers 

that are closer to the ground truth. 

According to RAGAs, the relevancy metric is computed by generating alternative question variants 

from the generated answer (called reverse-engineering) and then measuring how closely these recon-

structed questions match the original question/prompt using cosine similarity. In our example, the addi-

tional details (all possible trigger types) introduced in the original question may have slightly shifted the 



focus of the prompt, making the generated response less aligned with some of the reconstructed question 

variants, which could be potential factors that contribute to a slight decrease of the value of this metric 

– from 0.93 to 0.89. 

 

Table 8 

Comparative analysis of GPT-4’s responses on boundary branching effect in the process (Figure 5-g) 

Prompt How does the boundary message event m affect the process? 

Criteria 
CASE I 

(response generated by Ontotext GraphDB 10.8 using 

OpenAI’s GPT-4 model on RDF formatted data) 

CASE II 
(response generated by GPT-4 via API on 

BPMN XML formatted data) 

Response 

The boundary message event "m" in this process acts as 

an interrupting event. It disrupts the normal flow of the 

process and directs it towards another process step. In 

this case, after the event "m" happens, the process pro-

ceeds to Task D instead of continuing its normal se-

quence. 

I do not know. 

Ground 

truth 

If the boundary message event m arrives during the execution of the task B, this task is interrupted and task 

D will be executed instead. After task D is completed, the process ends at the subsequent End event. 

Response 

relevancy 
0.95 0.00 

Factual 

correctness 
1.00 0.00 

Semantic 

similarity 
0.94 0.70 

Semantic 

faithfulness  
0.84 0.71 

 

In the experiment described in Table 8, even though the RAG pipeline successfully retrieved the 

complete BPMN process in XML format – as the process itself was relatively short and fell well within 

the model’s input limits (a topic largely discussed in the scenario represented by Table 1) – GPT-4 still 

responded with “I do not know.” when asked about the effect of a boundary message event. This out-

come is consistent with the behavior specified in the prompt template, namely “If you do not know the 

answer to the following question, just say ‘I do not know.’ or ‘The provided context does not contain 

enough information.’ and nothing else.”. While this demonstrates compliance with prompt instructions, 

it also highlights a deeper limitation of using XML as input: its verbose, deeply nested structure, as well 

as its lack of explicit semantic relationships between elements hinder GPT-4 from extracting and inter-

preting such nuanced process details. This contributes to the XML-based response scoring zero in both 

relevancy and factual correctness. 

Despite the XML-based response being simply “I do not know.”, its semantic similarity score remains 

around 0.70. Research [38] has shown that even minimal expressions can carry rich semantic signals, 

meaning that, even though “I do not know” contains almost no factual details, its vector embedding is 

prone to capturing a generic signal of uncertainty, as embedding models like text-embedding-ada-002 

are designed to “behave”. In our case, the ground truth describes a specific conditional process (inter-

ruption at task B leading to task D), which inherently involves a notion of deviation or uncertainty about 

the normal flow, thus falling within a similar semantic domain as the generated answer’s. This shared 

aspect of uncertainty, even though very broadly defined, could be the cause of a moderate similarity 

score of 0.70, rather than something much lower, as one would expect. Similarly, semantic faithfulness 

is computed using cosine similarity between the embeddings of the retrieved context and the generated 



answer, which means that even a minimal response can yield a moderate score if it captures enough 

high-level semantic features. Therefore, in similar abstention scenarios, any response with semantic 

similarity and faithfulness scores below 0.76 can be considered unsatisfactory. 

This phenomenon is also evident in our other, more challenging text queries – those that extend be-

yond simple task identification or basic sequence flows. In our parallel branching tests (Table 12), for 

example, we asked whether a certain task could be executed if a preceding task, from a parallel branch, 

had not been already executed and why that might be the case – with the correct answer being that the 

task in question cannot be executed unless the previous task in the parallel branch has already been 

completed. Similarly, our event branching test (see Table 13) examined if two tasks could be executed 

concurrently, even if they originated from two separate branches emerging from a XOR event gateway 

– where only one path is typically taken. The query referring to the compensation branching model (see 

Table 14) evidenced in Figure 5-h, challenged GPT-4 to correctly identify the cause for the compensa-

tion flow, while our task collaboration tests (Tables 15 and 16) examined whether the model could 

accurately depict interactions among participants in the process (marked by Message Flows in the 

BPMN standard). Across these 5 scenarios, we observe that, with the increased complexity and nuanced 

BPMN logic in such non-explicit models, the RDF-based approach always outperforms the XML-based 

one. 

 

Our final experiments on BPMN models involving event collaboration (Figure 6-k) and lane coordi-

nation with data (Figure 6-m) further solidify the idea that RDF provides a more detailed and semanti-

cally rich representation of BPMN models than XML. However, these experiments also produced some 

rather intriguing scores that warrant some discussion. 

Firstly, it is worth mentioning how Case I and Case II, in both scenarios (see Tables 17 and 18, re-

spectively), achieved a perfect relevancy score, even if Case II, unlike Case I, is only partially correct. 

This high relevancy for Case II can be caused by the way the metric is calculated (explained in a previous 

example – see Table 7). Looking at the results from Table 17, the generated answer for Case II mentions 

only the event “E2” and does not explicitly reference the message “M1”. Keeping this in mind, the 

generated questions from the generated answer are inclined to align closely with the original question – 

specifically, “What does the start of the process executed by P2 depend on?” – which also does not 

directly mention M1; we believe that this might impact the relevancy score, despite the factual details 

being incomplete. 

Secondly, the low to medium factual correctness scores, despite Case I giving fully correct answers 

in both scenarios, might stem from the evaluation metric’s sensitivity to the granularity of the generated 

claims. For instance, GPT-4 provided additional details from the retrieved context – such as the “Sub-

sequent” relationship from task B to task C or the “Data Association” linking a data object to a task (see 

Table 18, Case I) – that are not explicitly required by the ground truth. 

5. Discussion and Implications 

In every prompt scenario (Table 1 – Table 18), the RDF-based representation (Case I) exhibits supe-

rior performance across almost all evaluation metrics. Built on explicit subject–predicate–object triples 

that map out clear, interconnected relationships between BPMN elements, the RDF-represented pro-

cesses aid the OpenAI’s GPT-4 model in providing complete and accurate responses with high scores 

in relevancy, factual correctness, semantic similarity and semantic faithfulness. In contrast, the BPMN 

XML-based response was occasionally deficient, particularly in factual correctness. These behaviors are 



observed in prompts requiring the extraction of temporal and conditional process details, where RDF 

consistently captures the nuanced relationships inherent in BPMN models more effectively than BPMN 

XML (with a more rigid format). These results underscore the importance of employing RDF as a means 

to serialize BPMN processes, thereby reinforcing the notion that structured, semantically rich represen-

tations can enhance natural language process querying tasks. Table 19 highlights which case achieved 

higher scores for each metric across all evaluation scenarios. 

Table 19 

Evaluation synthesis 

Metric Overall comparison Notable examples 

Response 

relevancy 

Case I generally scores higher com-

pared to Case II. 

•  Task and subprocess sequence inside a pool (Table 1); 

•  Branching scenarios: exclusive (Table 2), boundary (Table 8), 

parallel (Table 12), event (Table 13), compensation (Table 14); 

•  Task and collapsed pool collaboration (Tables 15 and 16, respec-

tively); 

•  Lane coordination with data (Table 18). 

Factual 

correctness 

Case I consistently outperforms 

Case II, many times even by a sig-

nificant margin. 

•  Task and subprocess sequence inside a pool (Table 1); 

•  Task sequence inside a subprocess based on a condition (Table 

3); 

•  Branching scenarios: exclusive (Table 2), boundary (Table 8), 

parallel (Table 12), event (Table 13), compensation (Table 14); 

•  Task, collapsed pool and event collaboration (Tables 15, 16 and 

17, respectively); 

Semantic 

similarity 

Case I exhibits higher similarity 

scores across all scenarios. 
•  All scenarios, including lane coordination with data processes 

(Table 18). 

Semantic 

faithfulness  

Case I is generally higher, alt-

hough, in one instance (Table 3), 

the scores are nearly equal (Case I 

= 0.77 vs. Case II = 0.78) 

•  All scenarios, except for task sequence inside a subprocess based 

on a condition (Table 3). 

 

Broader implications of these findings extend beyond the immediate context of BPMN process anal-

ysis. Enterprises may benefit from migrating toward semantically enriched process representations, 

where the main purpose is not to have the process description as a closed world data structure to be 

leveraged only by automation or simulation engines, but as a knowledge graph that adds on top of the 

basic machine-readability requirement the possibility of semantic enrichment, interpretation and inte-

gration across future knowledge-based systems that leverage procedural knowledge available through 

established notations such as BPMN. 

Both tool vendors and standardization bodies may want to consider a shift from the XML-dominated 

world of process interchange and serialization. In addition to tool-specific fine-tuning approaches for 

BPMN-AI integration, providing semantic graph export/import options for BPMN models could unlock 

or facilitate use cases pertaining to the BPM lifecycle. In various lifecycle phases it may be relevant to 

achieve traceability and reasoning through semantic networks built around process descriptions, or to 

semantically enrich process resources and workflow elements - e.g. with domain-specific taxonomies 

pertaining to ESG (Environment-Social-Governance) [39] policies, building management systems [40] 

or data access protocols [41]. Graph RAG patterns11, where the RAG context provided to LLMs is based 

on knowledge graphs instead of document chunks, are thus also enabled for next-generation AI-driven 

modeling environments. BPMN tools can evolve beyond diagram-focused modeling environments into 

 
11 https://www.ontotext.com/knowledgehub/fundamentals/what-is-graph-rag/ 



BPM knowledge “hubs” ready to support process-centric LLM-powered knowledge management (at 

design-time) as well as execution features (at run-time). Current implementations are only available as 

experimental artifacts, typically developed under a Design Science framework. Further implications that 

propagate across the entire BPM lifecycle must consider all possibilities enabled by this shift – i.e. for 

semantics-driven enactment, monitoring, discovery, with a potential for agile domain-specificity to be 

added as a semantic layer over the core process or trace descriptions. 

6. Conclusions 

Through the comparative use of RDF-encoded semantic graphs and XML-encoded diagrams, the ex-

periments in this paper report nuanced treatments for BPMN models subjected to OpenAI’s GPT-4 as 

procedural knowledge. Our findings, substantiated by the scores obtained using the RAGAs framework, 

indicate that RDF exports provide a more open-ended and relationship-aware approach to process inter-

pretation, compared to the standard XML export which appears to be treated as a closed-world data 

structure, even though the RDF version employs a non-standard, tool-specific, process description vo-

cabulary. 

The study has inherent limitations due to the fast evolution and stochastic nature of LLM services – 

not only variations between different versions, but also between work sessions are noticeable. Therefore, 

this work is not intended to be an evaluation of capabilities of a certain product, but a proposition of an 

interpretation and analysis protocol towards an augmented version of the BPM lifecycle as proposed by 

[11]. In repeated trials, response variability remains unavoidable due to the non-deterministic sampling 

mechanisms of LLMs. This poses limitations in terms of output distribution, making it challenging to 

guarantee that future executions will yield similar results. Thus, findings should be interpreted as indic-

ative rather than exhaustive. Although this GPT model represented a strong benchmark at the time when 

experiments were initiated, the absence of comparisons with others (Claude, Gemini, Mistral etc.) limits 

the generalizability of findings across the broader LLM landscape. Finally, there is inherent bias given 

by the fact that the RDF and XML serializations available do not share an identical vocabulary – in our 

future work we aim to assess the terminological sensitivity of LLM responses, while working with the 

same serialization format but manipulating its metamodel wording. 

We are also reluctant in stating that these are experiments on “process understanding” due to the 

inherent limitations of what tokenized language models “understand” as reported by recent investiga-

tions [42]; consequently we are treating process descriptions as information structures that can be que-

ried and navigated along explicit references by the pattern matching mechanisms of LLMs, hence our 

current focus on process serializations instead of computer vision or conversational modeling. 

Future work will be invested in further exploration of the possible synergies between the BPM lifecy-

cle and LLM services, specifically on prompting strategies that can generate such process serializations 

besides interpreting them. We also see opportunities involving domain-specific knowledge graphs, 

meta-models and XML/RDF schemas that could yield process interpretations which are better contex-

tualized in relation to the complexity of the prompt and the knowledge graph patterns that can act as 

process context. Pre-training and fine-tuning of public GPT services based on domain-specific 

knowledge is another direction to be explored towards a hybridization of model-driven engineering and 

prompt engineering in service of enterprise-tailored business process management. 
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Appendix 

Additional test queries on non-explicit minimalist BPMN models: 

Table 9 

Comparative analysis of GPT-4’s responses on task identification in a tasks/events sequence (Figure 5-b) 

Prompt Name all the tasks after the event X. 

Criteria 
Case I 

(response generated by Ontotext GraphDB 10.8 using 

OpenAI’s GPT-4 model on RDF formatted data) 

Case II 

(response generated by GPT-4 via API on 

BPMN XML formatted data) 

Response 
The tasks after the event X are Task B and Task C. The tasks after the event X are task B and task 

C. 

Ground 

truth 
The tasks after the event X are B and C. 

Response 

relevancy 
0.96 0.96 

Factual 

correctness 
1.00 1.00 

Semantic 

similarity 
0.99 0.99 

Semantic 

faithfulness  
0.81 0.74 

 

Table 10 

Comparative analysis of GPT-4’s responses on task identification in a decision branching process (Figure 5-e) 

Prompt 
Which are the tasks that are executed until the end of the process if condition v3 is 

true? 

Criteria Case I Case II 

Response 
If condition v3 is true, then the tasks executed until the 

end of the process are “C” and “Y”. 

If condition v3 is true, task “C” and task “Y” are 

executed until the end of the process. 

Ground 

truth 

The tasks that are executed until the end of the process if condition v3 is true are C and Y. 

Response 

relevancy 
0.99 0.99 

Factual 

correctness 
1.00 1.00 

Semantic 

similarity 
0.98 0.96 

Semantic 

faithfulness  
0.79 0.75 

 

Table 11 

Comparative analysis of GPT-4’s responses on task identification and sequence in a task collaboration process (Figure 6-l) 

Prompt Inside which lane is the task D? Which task comes before the task D? 

Criteria Case I Case II 

Response 
The task D is inside the lane labeled “L2”. The task that 

comes before task D is task C. 

Task D is inside the lane named “L2”. The task 

that comes before task D is task C. 

Ground 

truth 
The task D is inside the lane L2. The task that comes before the task D is the task C. 



Response 

relevancy 
0.95 0.96 

Factual 

correctness 
1.00 1.00 

Semantic 

similarity 
0.99 0.98 

Semantic 

faithfulness  
0.82 0.74 

 

Table 12 

Comparative analysis of GPT-4’s responses on task sequence identification in a parallel branching process (Figure 5-d) 

Prompt 
Can the task Y be executed if the task A was not previously executed? Why or 

why not? 

Criteria 
Case I 

(response generated by Ontotext GraphDB 10.8 using 

OpenAI’s GPT-4 model on RDF formatted data) 

Case II 

(response generated by GPT-4 via API on 

BPMN XML formatted data) 

Response 

No, the task Y cannot be executed if the task A was not 

previously executed. This is because, according to the 

information provided, task Y comes after a Non-exclu-

sive Gateway (converging), and task A is one of the tasks 

that lead up to this gateway. This means that task A must 

be completed before the process can continue and reach 

task Y. 

The provided context does not contain enough 

information. 

Ground 

truth 

The task Y cannot be executed if the task A was not previously executed, because the parallel non-exclusive 

gateway converges all the incoming sequence flows from the tasks A, B and C before executing the task Y. 

Response 

relevancy 
0.98 0.00 

Factual 

correctness 
1.00 0.00 

Semantic 

similarity 
0.96 0.75 

Semantic 

faithfulness  
0.80 0.75 

 

Table 13 

Comparative analysis of GPT-4’s responses on task sequence identification in an event branching process (Figure 5-f) 

Prompt Can the tasks A and B be executed simultaneously? Why or why not? 

Criteria 
Case I 

(response generated by Ontotext GraphDB 10.8 using 

OpenAI’s GPT-4 model on RDF formatted data) 

Case II 

(response generated by GPT-4 via API on 

BPMN XML formatted data) 

Response 

No, the tasks A and B cannot be executed simultane-

ously. The diagram describes a workflow where task B 

can only follow after the completion of an intermediate 

event (e2), which is one of the possible next steps after 

an exclusive event-based gateway (e?). Task A also fol-

lows after a different intermediate event (e1), which is 

another possible outcome of the same gateway. Since an 

exclusive gateway only allows for one sequence to fol-

low, tasks A and B cannot be executed at the same time. 

The provided context does not contain enough 

information. 



Ground 

truth 

No, the tasks A and B cannot be executed simultaneously, because at the exclusive event-based gateway 

labeled ‘e?’, the decision is based on which of the succeeding intermediate event (e1, e2 or e3) occurs first 

and only one of the paths can be taken. 

Response 

relevancy 
0.96 0.00 

Factual 

correctness 
0.71 0.00 

Semantic 

similarity 
0.95 0.74 

Semantic 

faithfulness  
0.83 0.75 

 

Table 14 

Comparative analysis of GPT-4’s responses on compensation flow identification in a compensation branching process (Fig-

ure 5-h) 

Prompt What triggers the compensation flow in the current process? 

Criteria 
Case I 

(response generated by Ontotext GraphDB 10.8 using 

OpenAI’s GPT-4 model on RDF formatted data) 

Case II 

(response generated by GPT-4 via API on 

BPMN XML formatted data) 

Response 

The compensation flow in the current process is trig-

gered by the End Event labelled as “e”, which has its 

compensation attribute set to “Yes”. 

I do not know. 

Ground 

truth 

The compensation flow in the current process is triggered by the compensation end event e. 

Response 

relevancy 
1.00 0.00 

Factual 

correctness 
0.50 0.00 

Semantic 

similarity 
0.96 0.71 

Semantic 

faithfulness  
0.79 0.72 

 

Table 15 

Comparative analysis of GPT-4’s responses on task execution identification in a task collaboration process (Figure 6-i) 

Prompt 
After the task B is executed, what conditions need to be met for task C to be exe-

cuted? 

Criteria 
Case I 

(response generated by Ontotext GraphDB 10.8 using 

OpenAI’s GPT-4 model on RDF formatted data) 

Case II 

(response generated by GPT-4 via API on 

BPMN XML formatted data) 

Response 

The execution of task C requires the completion of task 

F as depicted by the message flow M2 in this model. Af-

ter the completion of task B, task F should be executed 

for task C to take place. 

I do not know. 

Ground 

truth 

After the task B is executed, the execution of task C is conditioned by the arrival of the message M2 produced 

by the task F after its execution. 

Response 

relevancy 
0.90 0.00 

Factual 

correctness 
0.75 0.00 



Semantic 

similarity 
0.94 0.72 

Semantic 

faithfulness  
0.83 0.72 

 

Table 16 

Comparative analysis of GPT-4’s responses on participant interaction in a collapsed pool collaboration process (Figure 6-j) 

Prompt How does the participant P1 interact with other participants of the process? 

Criteria 
Case I 

(response generated by Ontotext GraphDB 10.8 using 

OpenAI’s GPT-4 model on RDF formatted data) 

Case II 

(response generated by GPT-4 via API on 

BPMN XML formatted data) 

Response 

The participant P1 interacts with other participants 

through tasks and message flows. P1 initiates a message 

flow “M1” from task “B” to participant P2. Later, P2 

sends back an interaction “M2” to task “D”. Therefore, 

participant P1 is able to both send and receive interac-

tions within the process. 

I do not know. 

Ground 

truth 

The participant P1 interacts with other participants of the process by sending the message M1 from the task 

B to the participant P2 and receiving the message M2 from the participant P2 to the task D. 

Response 

relevancy 
0.99 0.00 

Factual 

correctness 
1.00 0.00 

Semantic 

similarity 
0.96 0.74 

Semantic 

faithfulness  
0.82 0.71 

 

Table 17 

Comparative analysis of GPT-4’s responses on participant interaction and dependencies in an event collaboration process 

(Figure 6-k) 

Prompt What does the start of the process executed by P2 depend on? 

Criteria 
Case I 

(response generated by Ontotext GraphDB 10.8 using 

OpenAI’s GPT-4 model on RDF formatted data) 

Case II 

(response generated by GPT-4 via API on 

BPMN XML formatted data) 

Response 

The start of the process executed by P2 depends on the 

Intermediate Event E1 from the process executed by P1. 

This is indicated by the message flow M1 which runs 

from E1 to the start event E2 in P2. 

The start of the process executed by P2 depends 

on the event E2 as indicated by the startEvent 

id=”sid-87CD25C7-AA75-4667-AF37-

755E03DC9681” with name=”E2”. 

Ground 

truth 
The start of the process executed by P2 depends on the arrival of message M1 sent by P1 from E1. 

Response 

relevancy 
1.00 1.00 

Factual 

correctness 
0.33 0.00 

Semantic 

similarity 
0.94 0.90 

Semantic 

faithfulness  
0.79 0.81 

 



Table 18 

Comparative analysis of GPT-4’s responses on task input/output in a lane coordination with data process (Figure 6-m) 

Prompt What is the execution of task C conditioned by? 

Criteria 
Case I 

(response generated by Ontotext GraphDB 10.8 using 

OpenAI’s GPT-4 model on RDF formatted data) 

Case II 

(response generated by GPT-4 via API on 

BPMN XML formatted data) 

Response 

The execution of task C is conditioned by the completion 

of task B and the availability of data object d1, as indi-

cated by the 'Subsequent' relationship from task B to task 

C and the 'Data Association' from data object d1 to task 

C. 

The execution of task C is conditioned by the 

completion of task B, as indicated by the incom-

ing sequence flow from task B to task C in the 

provided context. 

Ground 

truth 

The execution of task C is conditioned by the execution and completion of task B and by data object d1 as 

input for task C. 

Response 

relevancy 
0.97 0.95 

Factual 

correctness 
0.50 0.50 

Semantic 

similarity 
0.96 0.93 

Semantic 

faithfulness  
0.84 0.75 

 

 
 


