
Revisiting Business Process Analysis

through the lens of Large Language Models:

Prompting experiments with BPMN process

serializations

Damaris - Naomi Dolha

a, Ana-Maria Ghiran

a and Robert Andrei Buchmann

a,*

a
 Babeș-Bolyai University, Faculty of Economics and Business Administration, 58-60 T. Mihali St.,

Cluj-Napoca 400591, Romania

Editors: First Editor, University or Company name, Country; Second Editor, University or Company name, Country
Solicited reviews: First Solicited Reviewer, University or Company name, Country; Second Solicited Reviewer, University or Company

name, Country

Open reviews: First Open Reviewer, University or Company name, Country; Second Open Reviewer, University or Company name,
Country

Abstract. Recent position papers have proposed that the traditional BPM (Business Process Management) lifecycle must be

revisited considering generative AI advances, specifically by investigating how LLMs (Large Language Models) can assist

various phases of the lifecycle. Inspired by that call to action, this paper reports on a series of experiments on how OpenAI’s

GPT-4 responds when querying the content of BPMN diagrams, as potential support for the Analysis phase of the BPM lifecy-

cle. We are particularly interested in how BPMN content - typically available in enterprises that adopted the BPM lifecycle -

should be exposed to LLM services, therefore we comparatively experiment with diagrams provided as XML serializations or

as tool-specific RDF serializations. This is a comparison between a standard serialization characterized by intricate cross-

referencing that compensates for the XML rigid hierarchical structure and the “semantic graph” view of RDF that is open-

ended in terms of semantic annotation and can be serialized as sequences of statements that resemble natural language. The

quality of the answers is assessed using the RAGAs (Retrieval Augmented Generation Assessment) framework.

Keywords: BPMN, Process serializations, Generative AI, RDF, XML, RAGAs

1. Introduction

The paper reports on continuous experimentation efforts with how selected Large Language Models

(LLMs) services interpret Business Process Model and Notation (BPMN) models exposed in a variety

formats – as standard XML serializations or as non-standard tool-specific RDF graphs. This work can

inform how we engage with an AI-powered version of the Business Process Management (BPM) lifecy-

cle [1], leveraging augmentations made possible by LLM services for certain phases of the lifecycle.

*Corresponding author. E-mail: robert.buchmann@econ.ubbcluj.ro.

For the experiments reported in this paper, the GPT-4 model of OpenAI accessed via its API was the

targeted service.

BPMN remains the dominant standard for documenting processes, predominantly relying on XML

for diagram serializations, a variety of schemas being available for this – e.g., XPDL, BPEL-WS, BPMN

XML, ADOXML. A large diversity of process-aware systems or engines [2] have been built on such

XML schemas to parse process descriptions. However, in the context of semantics-driven engineering

formulated by [3] the requirement of process understandability becomes just as relevant as process in-

stantiation and execution; moreover, process instantiation must sometimes be contextualized by a se-

mantic layer available in the form of knowledge graphs. Towards such needs, the introduction of RDF

(Resource Description Framework) encodings of BPMN content brings new semantics-oriented capa-

bilities, although such representations are not yet widely adopted and are tool-specific: some examples

are the Bee-Up modeling tool [4] and various demonstrators reported by the literature [5].

Our research explores the use of XML and RDF serializations of BPMN with generative Artificial

Intelligence (GenAI). The experiments harness the LLMs provided by OpenAI – in this report, GPT-4.

By targeted prompts, we probe various aspects of selectively designed BPMN exemplars, to see how

RDF compares with XML in facilitating interpretation of process descriptions, despite it not providing

a standard vocabulary such as those available to the XML schemas for process descriptions. The adop-

tion of knowledge graphs as process storage and BPMN knowledge structures is still an experimental

proposition in artifact-oriented literature [5,6], but it allows us to explore the potential of RDF to facili-

tate dialogue for process analysis via generative AI, beyond the XML export treatment of having BPMN

as a closed world markup data structure. Consequently, we formulate the following research question

pursued by the experimentation reported in this paper:

RQ1: How does the standard BPMN XML export compare with the RDF export available in the Bee-

Up modeling tool, when exposed to an LLM service tasked with answering natural language queries on

process descriptions? The queries must target both the identification of construct types and the naviga-

tion of chains of relationships in realistic complex examples, complete with labels and involving inter-

linked diagrams (i.e., subprocess).

RQ2: What are the outcomes of this comparison for a diversity of minimalist BPMN patterns involv-

ing: (a) the most used BPMN constructs – tasks, events, gateways, pools - cf. recent literature investi-

gating the prevalence of BPMN constructs in real collections of process descriptions [7]; (b) non-explicit

labels to prevent the LLM from extrapolating narratives from the textual tokenized labels without look-

ing at the process structure itself.

To foreshadow the paper findings, computed scores suggest that RDF representations of BPMN (in-

cluding non-visual content such as subprocess links) provide a more open-ended and relationship-aware

approach to LLM process interpretation, compared to more rigid XML serializations relying on intricate

cross-referencing across the Document Object Model tree confined to a closed-world schema. Numeri-

cal outcomes on specific process patterns will be discussed on a case-by-case basis in Section 4.

The LLM used for the experimentation reported in this paper is OpenAI’s GPT-4, as our current focus

is on varying the process description format. Future works will also vary the LLM services relevant for

these research questions.

This research aligns with a current stream of investigation into the capability of AI to engage with

conceptual models [8], thus also contributing to a meta-objective of refining an evaluation protocol on

LLM suitability to model interpretation. The paper furthers the investigation into how LLM services can

process serialized business process models, building upon initial prompting strategies that we have

reported in a conference scope in [9]. The comparative analysis in this version extends across a more

diverse set of scenarios, thereby expanding the representativeness and insights of the findings, based on

a more refined experimentation design.

We focus on process serializations, rather than images, because most BPMS (Business Process Man-

agement Systems) or BPA (Business Process Automation) platforms and services rely on serializations

for process repositories and model interchange, as they require deterministic interoperability or execu-

tion. The introduction of image recognition capabilities by the OpenAI’s GPT-4 model significantly

enhances the multi-modal interaction possibilities [10], enabling a more holistic approach to understand-

ing and interacting with BPMN models. However, visualization cannot fully grasp a process description

– many details relevant to process analysis do not manifest on a visual level (e.g., data attributes and

links between diagrams).

The paper is organized as follows: in Section 2, we establish the problem scope in the context of the

BPM lifecycle based on our reading of recent literature. Next, Section 3.1 explains the structural and

syntactical differences between XML and RDF, Section 3.2 summarizes the model exemplars used in

the experiments and Section 3.3 details the experimental setup. The core findings of our experimental

study, along with our interpretation are reported in Sections 4.1 and 4.2, where the first analysis is on a

full complex example and the latter focuses on minimalist BPMN patterns that are left unexplicit to

force the LLM to develop its interpretation independently of the textual labeling found in diagrams.

Section 5 synthesizes the results and connects them to broader implications. Concluding this study, Sec-

tion 6 summarizes the findings and maps out directions for future exploration.

2. Large Language Models and the BPM lifecycle

Motivated by the need to revisit the BPM lifecycle through the lens of the capabilities of LLMs [11],

our investigation checks for the suitability of LLMs - in this paper OpenAI’s GPT-4 model - for the

semantic querying of procedural knowledge available in BPMN formats. The process analysis phase of

the BPM lifecycle has traditionally relied on process queries by various means developed over the years:

graph queries [5,6], formal languages [12], visual grammars [13]. Retrieval of information from BPMN

models can of course be performed by visual analysis due to the diagrammatic nature of the content,

however process queries are called to provide automatable mechanisms that can also be executed over

process repositories. On the other hand, in our work we use smaller, even minimalist examples, to assess

the LLM suitability as a replacement for process querying – therefore no repository scalability concerns

are raised in this study, as we are focusing on isolating certain workflow patterns and commonly used

BPMN constructs.

The phases of the BPM lifecycle revisited in relation to LLMs radically depart from the conventions

of pre-GPT process analysis tools. Recent works [11] draw attention to how these models can redefine

how we think about the phases of the BPM lifecycle: in the process identification phase, LLMs cut

through the clutter of unstructured data: they do not just find information, they can gather workflow

knowledge – moving into process discovery, the influence of GenAI can enhance process mining frame-

works. Traditionally tethered to XML event logs, RDF can push graph-based process mining [14]. When

it comes to querying processes, where this paper’s focus lies, the traditional XML frameworks and

XPath/XQuery-based retrieval are now over-hauled by multi-modal AI [15] with their computer vision

capabilities. Yet, reliance on computer vision has its limits and must be complemented by a semantic

serialization layer to also expose non-visual aspects that remain semantically relevant – e.g., links be-

tween different models (such as RACI responsibilities on task level) or data attributes (e.g., task costs).

In the redesign phase, AI can advocate changes, using code generation on serializations to apply work-

flow updates. As those updates are implemented, LLMs enrich user interactions with detailed explana-

tions, shifting emphasis from static workflow sequences to dynamic conversational choreographies.

During the monitoring phase, LLMs are not confined to data display, as they can interpret and analyze

data.

The current report focuses on process querying and interpretation, crucial stages in process analysis,

that require question-answering mechanisms and the capacity to draw inferences from the process se-

mantics. As AI pushes the boundaries of BPM, recent technological proposals change the way processes

can be analyzed. The BPMN2KG initiative [5] illustrates the conversion of BPMN 2.0 models – typi-

cally expressed in XML – into RDF-based knowledge graphs and marks a different view on the instan-

tiation of process models. Similarly, another conversion tool [6] allows BPMN XML formats to morph

into Neo4J labeled property graphs (LPG), providing an alternative graph representation that adheres to

the BPMN 2.0 vocabulary.

The work in [16] laid an early foundation by exploring process querying methods and applications in

BPM, establishing benchmarks that later studies would build upon. Furthermore, [13] ventured into the

application of LLMs for textual analyses within BPM, demonstrating that GPT-4 can effectively derive

both imperative and declarative process models from natural language descriptions – a significant ad-

vance for process querying. Shortly thereafter, analyzing the effectiveness of ChatGPT in generating

and deciphering diverse conceptual models, [8] suggested certain operational nuances that influence

model interpretation. Building on these foundational insights, [17] extends earlier research by not only

confirming the viability of LLMs for textual analysis in BPM, but also by operationalizing these capa-

bilities into a comprehensive process modeling framework. It takes a step further by automating the

transformation of textual descriptions into standardized process models, such as BPMN and Petri nets.

Another investigation, this time on prompt engineering for BPM [18], underscored the critical im-

portance of prompt design for obtaining consistent and reliable outputs from LLMs. Similarly, [19]

reinforces the idea that prompt customization is key for enhancing BPM outcomes and expanding do-

main knowledge coverage, with LLMs suggesting missing concepts from business process models (se-

rialized using XML, XPDL and XMI) and converted into CSV files for further processing. Comple-

menting these developments, recent research [20] explores whether LLMs can substitute for domain

experts by evaluating enterprise models and highlights that measuring certain quality aspects – such as

completeness – remains challenging due to the inherent subjectivity and variability in certain models.

Expanding the scope further, [21] scrutinized the intersection of GPT technology with RPA, drawing

attention to potential security and compliance challenges as enterprises increasingly incorporate AI-

driven process automation. The integration of GPT-3.5 Turbo with Lean Six Sigma 4.0 methodologies

[22] revealed promising avenues for upgrading customer service and enhancing real-time decision-mak-

ing processes. Moreover, [23] proposed a forward-thinking strategy that involves merging LLMs with

knowledge graphs, an approach that is particularly promising when these graphs are designed around

diagrammatic procedural knowledge effectively serialized as semantic networks.

While extensive research has concentrated on the performance of LLMs on unstructured text (such as

generating and refining business process models from textual descriptions [24] or extracting process

information from text [25]), their ability to query structured serializations – specifically, RDF and XML

serialization of BPMN process descriptions – remains largely underexplored.

This gap is significant, given the essential role that structured process representations play in BPM –

traditionally, as storage format for process automation and analysis engines (hence the XML dominance)

but now more relevant as semantically open-ended knowledge assets (hence our focus on RDF). Even

though prior work [26] examined the performance of LLMs on structured formats such as tabular data,

data-oriented scenarios differ significantly from those posed by structured BPMN representations (e.g.,

accurately parsing complex workflow patterns or managing intricate cross-references).

3. Experimental Setup

At the forefront of our study is Bee-Up 1.7 [4], a core component of the OMiLAB Digital Innovation

environment [27], known for its role in semantically enriching both standard-based and domain-specific

models and languages, allowing the exploitation of inter-model links as semantic bridges between a

diversity of modeling languages – e.g., BPMN, UML, DMN, EPC and Petri Nets.

SAP Signavio [28] was used as a representative for the tools providing the standard BPMN 2.0 XML

serialization.

Both tools provide image exports as PNG and other image formats, however the experimentation

reported in this paper focuses on the XML vs. RDF exports comparison, for the reasons already ex-

plained in the previous section.

3.1. Serialization comparison

The structural differences between the XML and RDF serializations are briefly explained here based

on the sample diagram in Figure 1, which shows a minimal subprocess linked to a main process with

pool and lanes containment, as well as labeled connectors outgoing from a gateway.

Fig. 1. BPMN exemplar that includes a subprocess link.

Figure 2 provides an overview of the hierarchical, DOM-based structure available in the standard

serialization, conforming the standard BPMN 2.0 XML schema available in Signavio.

Because the hierarchical decomposition does not reflect the visually directed graph structure of the

diagram, an intricate network of cross-references across XML tags must preserve all relevant relation-

ships. Some of these are attribute-attribute matches (e.g., to specify containment between a pool and

the process inside it), others are attribute-tag matches (e.g., to specify containment between a lane and

its flow elements, but also visual connectors referencing their connector heads), one-to-one (e.g., an

arrow can have one starting point and one ending point) or one-to-many matches (e.g., a gateway has

multiple outgoing connectors). Only a few relationships are expressed by the implicit parent-child XML

nesting that would be familiar to a basic parser reading such content sequentially: a process containing

lanes and a subprocess containing its contents. XML parsers navigate such complex cross-references as

prescribed by the governing XML schema, but process interpretation by a linear token-based parser

reading it as textual content requires frequent back-and-forth jumps based on heterogeneous matching

rules.

Fig. 2. Cross-references in the DOM hierarchy of the standard BPMN XML serialization (based on the exemplar in Figure 1).

Comparatively, Figure 3 showcases the graph structure of an RDF serialization in Bee-Up, derived

from transformation patterns initially formulated in [29].

The graph edges represent predicates that can be derived from various ways in which diagrammatic

descriptions can express relationships: visual connectors (i.e., sequence flows, message flows), hyper-

links (e.g., links to subprocesses), containment relationships (to lanes, pools), data attributes editable in

the tool (e.g., simulation attributes, connector annotations) and also open-ended properties that can be

attached as annotations to any diagrammatic element (not used in this example).

Some visual connectors must emulate the “property graph” approach – i.e., graph edges having their

own properties – therefore the outgoing arrows from the XOR gateway, which need to be labeled dif-

ferently are highlighted as a reification pattern (the Bee-Up export does not currently employ RDF-star

[30] which could simplify this further). The connector is reified to hold any attributes that are distinc-

tively set for each instance of that connector. SPARQL rules and filters can be used to conveniently

query the connectors in either the simple (non-annotated) form, or in the reified (annotated) form, de-

pending on the process query requirements.

Subprocesses are isolated as separate named graphs, however, linked within the same RDF dataset.

Leveraging such patterns, an RDF export is available in the Bee-Up modeling tool, with some termino-

logical aspects not detailed here (tool-specific namespaces). On the top of the figure, TriG/Turtle state-

ments show the process as it is serialized and grouped by the diagram graph where the statements belong.

Many other attributes can be exported, not visible here as they are not relevant to semantically-oriented

process queries (e.g., visual position) and are also filtered out by our component that delivers the graphs

to GPT-4.

Fig. 3. Graph structure for the RDF serialization (based on the exemplar in Figure 1).

3.2. Model exemplars used in experiments

We focused our experiments on two kinds of BPMN models: (1) a realistic model of a main process

linked to a subprocess, illustrated in Figure 4; (2) a set of minimalist process patterns (Figures 5-6) that

are labeled non-explicitly to allow us to probe process structure interpretation while avoiding any chance

of hallucinating a business scenario narrative out of textual labels. We only showcase in Figures 4-6 the

Bee-Up variants, having equivalent elements to the Signavio variants.

The realistic process model in Figure 4 depicts the logic of an RPA bot planned to mimic the human

actions for online shopping, as well as the data requirements for the bot to accomplish such a task and

the “human in the loop” interactions – including credentials needed to perform some authentication steps

on behalf of the human.

Fig. 4. BPMN diagrams depicting the main BPMN process (left) and the “Bot authentication microflow” subprocess (right)

designed in Bee-Up 1.7

The examples in Figures 5-6 follow a different strategy: only generic labels are visible, forcing the

LLM to look into the process structures instead of extrapolating scenario narratives inspired by labels,

as this was detected as an occasional behavior on label-rich diagrams. This also helps us assess the

structural and flow-based “reasoning” abilities that may manifest, driven by the different types of con-

nectors and the semantics they carry – sequence flows, message flows, data associations.

Fig. 5. Minimalist process modeling patterns in BPMN.

Fig. 6. Collaborative and coordinated process patterns in BPMN.

3.3. Experimental framework and GPT model integration

The key feature leveraged in Bee-Up is the RDF export, which builds on previously introduced dia-

gram-to-named graphs transformation patterns [29]. To parse and filter the RDF outputs as semantic

graphs, we turned to Ontotext GraphDB 10.8 [31] after stripping away irrelevant attributes from the

RDF metadata.

Ontotext GraphDB expands the standard SPARQL querying capabilities with OpenAI-oriented func-

tions such as gpt:ask()1 that engages directly with the selected GPT model (specifically for this work,

GPT-4) while exposing to it a convenient subgraph extracted from the RDF repository. The structure of

the utilized query is shown below, filtering specific types of nodes and edges that are relevant for the

process description (and not for its visualization):

prefixes removed for concision

<…> are placeholders for relevant graph edges or node types, as well as the user

prompt

SELECT ?answer ?rdfSer WHERE {

SELECT (helper:rdf(helper:tuple(?x, ?prop, ?o)) AS ?rdf)

WHERE {

 GRAPH :<graph_name> {

 ?x a ?type ; ?prop ?o .

FILTER(?type IN (<RDF_class_identifier1>,

<RDF_class_identifier2>,

<RDF_class_identifier3>, …))

 FILTER(?prop IN (<property1>, <property2>, <property3>, …))

 }

 }

}

BIND(helper:serializeRDF(?rdf) as ?rdfSer)

?answer gpt:ask (“prompt_template+user_question” ?rdf)}

We use zero-shot learning out of the prompting techniques discussed by the literature [32,33] – where

the GPT model is prompted to perform a task without being provided any prior examples – and incor-

porate a “persona” prompt template. Specifically, in the SPARQL query, we pass this prompt template

to the gpt:ask() function along with the actual question. This strategy defines GPT-4’s role as a question-

answering assistant and sets a strict format for its responses, keeping them brief and anchored in the

provided content (namely, the semantic triples). This minimizes the ambiguity, possible hallucinations

and variability in the generated outputs, so the evaluation of these responses is simplified. Importantly,

while our instructions clearly define the style and format of the generated response, they refrain from

any explanations of the retrieved content, allowing GPT-4 to independently derive its meaning.

In order to boost performance on knowledge-intensive tasks, the authors of [34] introduced a Retrieval

Augmented Generation (RAG) framework that pairs a search component (called a retriever) with an

LLM, allowing the system to first identify relevant contextual information and then generate context-

aware responses – a concept we also leverage in order to request responses based on the BPMN content.

We deployed a local environment (namely, a Weaviate2 instance for vector storage) to serve as our

vector database for the process information, which integrates smoothly with the LangChain3 compo-

nents we use to load the BPMN XML file. We utilize the same prompt template – used to query the

1 https://graphdb.ontotext.com/documentation/10.8/gpt-queries.html#gpt-ask-retrieve-a-single-answer
2 https://weaviate.io
3 https://www.langchain.com

RDF graph database – and integrate the retriever, the prompt, as well as the GPT model into a so-called

RAG pipeline. Each user query is processed through a predefined prompt template and passed to the

retriever, which extracts the process model content to be provided as context to GPT-4. Both the answers

and the associated context retrieved for each prompt are stored for subsequent evaluation. Regarding

GPT-4’s configuration, we maintained a consistent setup across all platforms, including both GraphDB

and our Python scripts4:

Temperature: 1

Embedding model: text-embedding-ada-0025

Max. tokens: 8192 tokens

Top_p: 1

Frequency and Presence penalty: 0

4. Evaluation and Experimental Outcomes

During April-July 2024, followed by revision refinements during October-December 2024, we exam-

ined responses produced by GPT-4 to a variety of prompts probing its BPMN-based process analysis

capabilities. For clarity, we refer to the RDF variant by “Case I” and to SAP Signavio exports by “Case

II”. This approach is not intended to highlight limitations within any specific tool, but to explore the

differences and potential insights that different serialization formats may reveal.

In the preliminary stages of our experiments, the tools deployed in the aforementioned cases demon-

strated adeptness in responding to straightforward inquiries, such as identifying participants or listing

the sequence of steps in the provided processes. These queries, predominantly aiming at recognizing

basic BPMN elements, established a baseline of competence.

Using the Retrieval Augmented Generation Assessment (RAGAs) framework [35], we compare the

answers generated by the LLM from both cases against a manually crafted reference/ground truth, fo-

cusing on four key metrics: Response Relevancy6, Factual Correctness7, Answer Semantic Similarity8

and a modified version of the Faithfulness9 metric. Response Relevancy, initially known as “Answer

Relevance”, measures how well the generated answer addresses the question posed in each experiment,

independent of its factual accuracy, and imposes penalties for extraneous information. Factual Correct-

ness (“Answer Correctness”) evaluates the factual consistency between the generated answer and the

ground truth (which is the gold standard against which the generated answers are compared), by decom-

posing both into discrete claims and applying natural language inference techniques to measure their

alignment. Within the experiments, we set the Factual Correctness’s mode parameter to “precision”,

atomicity to “low” and coverage to “high”, in order to apply an entity coverage that is both granular and

extended over the full context. Answer Semantic Similarity, previously known as “Answer Similarity”,

focuses on the extent to which the meaning of the generated answer matches the meaning of the refer-

ence, even if the wording is different. Unlike Factual Correctness, this metric first converts both the

generated answer and the ground truth into vectors, then computes the cosine similarity between them

to assess their shared semantic content rather than exact phrasing. On top of these metrics, we updated

4 https://github.com/Damarissss/structured-text_RAG-pipeline_RAGAs/tree/main
5 https://openai.com/index/new-and-improved-embedding-model/
6 https://docs.ragas.io/en/stable/concepts/metrics/available_metrics/answer_relevance/
7 https://docs.ragas.io/en/stable/concepts/metrics/available_metrics/factual_correctness/
8 https://docs.ragas.io/en/stable/concepts/metrics/available_metrics/semantic_similarity/
9 https://docs.ragas.io/en/stable/concepts/metrics/available_metrics/faithfulness/

Faithfulness to get a better sense of how well the generated answer matches the retrieved context. Nor-

mally, Faithfulness measures the proportion of claims within the generated response that are substanti-

ated – i.e., inferable – based on claims present in the provided context. But since our contexts are struc-

tured (RDF triples and XML), while the generated answers are unstructured (textual descriptions) – each

format organizing and representing information differently – comparing them directly can become chal-

lenging. To address this, we use OpenAI’s text-embedding-ada-002 embedding model to convert both

the answer and the retrieved structured context into vector embeddings, then compute the cosine simi-

larity between them and average the results (rounded to two decimals) – much like how Answer Seman-

tic Similarity is calculated. This new approach, which we call “Semantic Faithfulness”, offers a clearer

evaluation on whether the semantic content of the claims in the generated answer is meaningfully sup-

ported by the retrieved contextual information.

In these comparative LLM experiments, automated metrics provide a “sensor” instrument to augment

human interpretation of the response deviations, and also to distinguish between different types of de-

viations (e.g. question misinterpretation versus inference insufficiencies). This approach aligns with re-

cent literature [20] in the field of model quality assessment using LLMs, where the authors advocate for

the use of LLM-based evaluation patterns that integrate quality frameworks and emphasize that such

techniques can aid human raters or serve as scaffolding in quality validation. As mentioned in the intro-

duction, it is also a secondary (meta)goal of this work to refine such an evaluation protocol that can be

reused for queries on larger scale content, where direct human interpretation is less feasible. Moreover,

this opens opportunities and potential for instructional, corrective feedback loops automated based on

the computed metrics.

The evaluation process for the BPMN models serialized in RDF began by loading the Turtle-serialized

process description and filtering out triples that hold to no semantic relevance (visual properties). The

context is paired with a specific question, its corresponding ground truth and GPT-4’s answer. An eval-

uation dataset is thus constructed from these components. Subsequently, evaluation metrics from the

RAGAs framework, along with a custom semantic faithfulness measure, were applied to assess the gen-

erated responses. The results were exported as a JSON file for further analysis.

Meanwhile, for BPMN XML, the generated answers are evaluated using the same metrics, with the

retrieval process – explained in detail in Section 3.3 – providing the necessary context for each query.

Just as in the RDF case, these outputs are compiled into a dataset and exported as a JSON file containing

the user input, retrieved contexts, response, reference and the four metrics.

The XML process serialization offers a standard vocabulary, not only a standard structure, XML being

traditionally a data interchange format. The RDF export of BPMN is only standard in the structural

sense – as a directed semantic graph standard – and not as a process description vocabulary, for which

intuitive tool-specific terms are generated by Bee-Up, derived from the concept labeling that is pre-

scribed on the metamodel level. Therefore, LLMs may treat the RDF variant as a semantic network that

happens to contain edges whose labels describe workflows, while the XML variant can be recognized

upfront as a standard interchange format that is widely available in training corpora and Web content.

We selected test queries to span a range of retrieval cases of different complexities: from simple

element enumeration/type distinctions to navigating conditional branching and inter-pool communica-

tion, collecting data annotations (e.g., time, costs) and for the realistic example, also the navigation of

the subprocess hyperlink.

The strategy was rooted in a perspective based on our metamodeling experience, which is common

to both the XML and RDF serializations – in the sense that they explicitly distinguish node and relation

types, containment and data annotation; human interpretation of any BPMN diagrams cognitively relies

on grasping these distinctions and, based on them, navigating multi-hop relationships within directed

graphs. Experiments are also guided by the BPMN usage trends reported by [7], where the most common

constructs found in several large collections of BPMN diagrams were identified – our battery of exam-

ples does not yet cover all possible constructs, as we are prioritizing based on such usage rankings.

We also diversified prompts according to the business process management perspectives – i.e. looking

at control flows, communication/collaboration perspective and the data perspective, as well as subpro-

cess navigation between different diagrams as expected in a realistic process repository where not all

information is expressed by a single diagram. To avoid erroneous interpretations, we tried to formulate

the queries as explicitly as possible, consistently using standard BPMN terminology - for instance, re-

ferring to process steps as tasks.

Our findings are presented in the following tables, with the highest metric value highlighted in bold,

accompanied by a detailed discussion. Occasional explanations of how the metrics are calculated will

be provided for certain scenarios; in some cases, the scores are sufficiently self-explanatory. Given the

probabilistic nature of LLMs, multiple test iterations were conducted to identify the most consistently

retrieved responses, regardless of variations in phrasing or style.

Sections 4.1 and 4.2 will discuss the most relevant prompts where meaningful differences can be

highlighted, whereas less interesting prompts, with inconclusive results or minimal variation, can be

consulted in the appendix.

4.1. Prompts on the explicit realistic example

Table 1

Comparative analysis of GPT-4’s responses on task and subprocess enumeration in the “User coordinated bot (at Client)”

pool (Figure 4)

Prompt
Enumerate all tasks and all subprocesses inside ‘User coordinated bot’ pool, sub-

sequent to the task labeled ‘Add product to cart’.

Criteria

Case I

(response generated by Ontotext GraphDB 10.8

using OpenAI’s GPT-4 model on RDF formatted

data)

Case II
(response generated by OpenAI’s GPT-4 model

via API on BPMN XML formatted data)

Response

The tasks and subprocesses inside ‘User coordinated

bot’ pool, subsequent to the task labeled ‘Add prod-

uct to cart’ are the following: ‘Edit quantity’, ‘Bot

authentication microflow’, ‘Authenticate user of

failed authentication’, ‘Provide delivery & invoicing

data’, ‘Request billing’, ‘Trigger payment with

saved payment method’, ‘Approve online payment’,

‘Look for email from merchant’, ‘Save invoice’,

‘Generate order confirmation SMS’, ‘Generate fail-

ure SMS’, ‘Track order’, ‘Notify delay’, and ‘Leave

feedback’.

The tasks and subprocesses from the ‘Robot in

browser’ lane that are subsequent to the task labeled

‘Add product to cart’ are ‘Edit quantity’, ‘Provide

delivery & invoicing data’, ‘Request billing’, ‘Trig-

ger payment with saved payment method’.

Ground

truth

All tasks and all subprocesses inside ‘User coordinated bot’ pool, subsequent to the task labeled ‘Add prod-

uct to cart’ are: ‘Edit quantity’ (belonging to the subprocess labeled ‘Repeat for each desired product’), ‘Bot

authentication microflow’ (subprocess), ‘Provide delivery & invoicing data’, ‘Notify user of failed authen-

tication’, ‘Request billing’, ‘Trigger payment with saved payment method’, ‘Approve online payment’,

‘Look for email from merchant’, ‘Save invoice’, ‘Generate order confirmation SMS’, ‘Generate failure

SMS’, ‘Track order’, ‘Leave feedback’, ‘Notify delay’.

Response

relevancy
0.94 0.81

Factual

correctness
0.93 0.12

Semantic

similarity
0.99 0.86

Semantic

faithfulness
0.82 0.76

Looking at the results in Table 1, Case I (RDF formatted data) and Case II (BPMN XML export)

behave rather differently. In the first case, where we filter the RDF triples with the SPARQL query,

GPT-4 provides the user with an almost complete and correct answer that also closely matches the

ground truth – evidenced by high relevancy, correctness and semantic similarity scores. Most of the

important details from the structured context are properly reflected within the generated response, except

for the expanded subprocess labeled “Repeat for each desired product” – where the tasks “Add product

to cart” and “Edit quantity” are displayed – revealing a certain limitation in coverage and a slightly

lower score for semantic faithfulness.

In contrast, the second case yields a partial response, enumerating only the first few tasks following

the task labeled “Add product to cart” within the requested pool. Since the utilized BPMN XML file is

quite large – containing more than 20000 tokens – it exceeds the input size that GPT-4 can handle at

once. To manage this, we automatically split the file into smaller, overlapping sections of text called

chunks (using RecursiveCharacterTextSplitter10). Each chunk includes a bit of content from the begin-

ning and end of the neighboring chunks, so that important contextual information is not lost during the

split. By default, the system retrieves 4 chunks when answering a question, which falls within a safe

limit for the GPT-4’s input. Nonetheless, for lengthy process descriptions, where tasks and subprocesses

are distributed throughout, this default behavior can result in incomplete responses, which is one of the

possible reasons that could explain the missing information in some of our test cases (see Table 1, Case

II). To improve this, we note that it is possible to combine manual tag removal with automated text

splitting or to increase the number of retrieved chunks to capture more context, while still staying within

the input limits of the utilized model.

Another observation about Case II is that GPT-4 failed to capture the subprocesses embedded within

the BPMN model, focusing solely on task-type elements and contributing to an incomplete representa-

tion even of this small portion of the process that the LLM retrieved.

Table 2

Comparative analysis of GPT-4’s responses on simultaneous task execution (Figure 4)

Prompt
Can the tasks ‘Notify user of failed authentication’ and ‘Provide delivery & in-

voicing data’ be executed simultaneously and why or why not?

Criteria Case I Case II

Response

Based on the model, the tasks ‘Notify user of failed

authentication’ and ‘Provide delivery & invoicing

data’ cannot be executed simultaneously. This is be-

cause these tasks are conditioned by different out-

comes of the ‘Authentication_successful?’ gateway.

The task ‘Notify user of failed authentication’ is trig-

gered when authentication is unsuccessful, whereas

the task ‘Provide delivery & invoicing data’ is trig-

gered when authentication is successful. Thus, these

tasks target opposing scenarios and cannot occur at the

same time.

The tasks ‘Notify user of failed authentication’

and ‘Provide delivery & invoicing data’ cannot be

executed simultaneously. This is because in the

given context, these tasks are part of a sequence

flow in a business process model, which means

they are executed one after the other, not concur-

rently. The ‘Notify user of failed authentication’

task is executed when the authentication is unsuc-

cessful, while the ‘Provide delivery & invoicing

data’ task is executed after successful authentica-

tion.

10 https://python.langchain.com/v0.1/docs/modules/data_connection/document_transformers/recursive_text_splitter/

Ground

truth

No, the tasks ‘Notify user of failed authentication’ and ‘Provide delivery & invoicing data’ cannot be exe-

cuted simultaneously because they follow an exclusive gateway labeled ‘Authentication successful?’, al-

lowing only one path to be executed. The process either handles a failed authentication or proceeds with a

successful authentication, but not both.

Response

relevancy
0.99 0.99

Factual

correctness
1.00 0.25

Semantic

similarity
0.97 0.96

Semantic

faithfulness
0.79 0.78

Both responses in Table 2 address the prompt well and capture the overall meaning expected by the

ground truth, given the high relevancy and semantic similarity values. Although the first part of the

XML-based answer (Case II) is syntactically and semantically similar to the ground truth, it misses or

misrepresents key factual details in the following parts of the response – specifically, it fails to fully

capture the exclusive gateway mechanism, which is the true reason that prevents simultaneous execution

and not the fact that the tasks are executed one after another. This is also supported by low factual

correctness. Regarding Case I, most key details in the process are correctly captured, even though minor

discrepancies exist. One such discrepancy emerges from how resources are named and represented in

the RDF context. Particularly, process elements (subjects and objects) are identified using full IRIs (In-

ternationalized Resource Identifiers) – long, unique web-like addresses. These IRIs are typically ex-

panded from a shorthand prefix. For example, the prefix “:” refers to the namespace

“http://www.omilab.org#”. Therefore, a snippet like:
<http://www.omilab.org#Task_BPMN-19347-Provide_delivery_+_invoicing_data> a

<http://bee-up.omilab.org/rdf/1_7#o_Task_BPMN>

which identifies the task “Provide delivery & invoicing data” as an instance of a BPMN task type, can

slightly affect the vector representation, especially when compared to the more natural phrasing used in

generated answers, leading to small mismatches in the cosine similarity (even if the answer is semanti-

cally correct) when calculating the semantic faithfulness. Case II reflects comparable alignment with its

context, despite the variations in how the information is structured.

Table 3

Comparative analysis of GPT-4’s responses on “Bot authentication microflow” (subprocess) description under a condition

(Figure 4)

Prompt
What happens inside the corresponding subprocess if the user credentials are not

valid?

Criteria Case I Case II

Response

If the user credentials are not valid, the subprocess

in this context diverges at the Exclusive Gateway

“Credentials valid?”. It will then execute the Task

“Check for multiple failed attempts”, followed by

another decision at “Attempts under limit?”. If the

number of attempts is under the limit a grace period

would be given for another attempt otherwise, the

“Lock account” task runs, leading to “Increment

failed attempts counter”, and “Notify user of account

status” tasks. A notification is then sent out, marking

If the user credentials are not valid, the process di-

verges at the “Credentials valid?” gateway. The pro-

cess then moves to the “Notify user of failed authen-

tication” task, where the user is informed about the

failed authentication attempt.

the end of the flow with the End Event “Failed au-

thentication”.

Ground

truth

If the user credentials are not valid, the system checks for multiple failed attempts. If there are no more

attempts, the account is locked, the failed attempts counter is incremented, the user is notified of the account

status and the subprocess ends with a failed authentication. If the attempts are under limit, the user is granted

a grace period for one more try before lockout and if the user accepts the additional authentication attempt,

the system returns to the earlier task of retrieving user credentials.

Response

relevancy
0.91 0.91

Factual

correctness
0.87 0.33

Semantic

similarity
0.93 0.89

Semantic

faithfulness
0.77 0.78

The part “inside the corresponding subprocess” from this prompt (Table 3) is designed to test whether

the model can identify the correct subprocess – namely, “Bot authentication microflow” – based on a

clear condition, without being explicitly told. Both responses do recognize it by mentioning the exclu-

sive gateway, “Credentials valid?”, which represents the central divergence inside the subprocess. How-

ever, while the RDF-based answer in Case I accurately goes further by elaborating upon tasks such as

checking for multiple failed attempts, granting a grace period and locking the account, the XML-based

answer in Case II stops prematurely at “Notify user of failed authentication” task, which is not even part

of the subprocess in question, leading to a much lower factual correctness score for Case II.

Case II's high semantic similarity score may seem surprising given its factual incompleteness, but it

can be explained by how the metric is calculated. Semantic similarity is determined by comparing vector

embeddings of the generated answer and the ground truth, focusing on the overall meaning rather than

every fine-grained detail. OpenAI’s reference documentation [36] provides more insight into how em-

beddings convert text into dense vector representations that capture the semantic essence of the input,

enabling tasks like semantic search and similarity comparisons. As mentioned before, we use OpenAI’s

text-embedding-ada-002 [37], which brought a significant performance boost from previous embedding

models. As a result, even if the answer omitted some parts, its main semantic content remains closely

aligned with the ground truth – capturing the core idea that the process diverges at the “Credentials

valid?” gateway and can also follow a failure branch – thus yielding a high similarity score.

Table 4

Comparative analysis of GPT-4’s responses on cost and execution time of the tasks within a subprocess (Figure 4)

Prompt
What are the cost and execution time for every task within the bot authentication

microflow?

Criteria Case I Case II

Response

The cost and execution time for each task within the

bot authentication microflow are as follows: ‘Re-

trieve user credentials’ costs 0.01 and takes 2 sec-

onds, ‘Validate credentials’ costs 0.02 and takes 5

seconds, ‘Check access rights’ costs 0.03 and takes

6 seconds, ‘Create authentication log’ costs 0.01 and

takes 1 second, ‘Check for multiple failed attempts’

costs 0.01 and takes 1 second, ‘Lock account’ costs

0.03 and takes 5 seconds, ‘Increment failed attempts

The bot authentication microflow consists of several

tasks, each with its own cost and execution time. The

“Activate bot” task has an execution cost of 0.05 and

takes 00:00:05 to execute. The “Check for multiple

failed attempts” task has an execution cost of 0.01

and takes 00:00:03 to execute. The “Lock account”

task does not have specified execution costs and time

in the provided context. The “Check access rights”

task has an execution cost of 0.03 and takes 00:00:06

counter’ costs 0.01 and takes 1 second, and ‘Notify

user of account status’ costs 0.02 and takes 2 sec-

onds.

to execute. The “Create authentication log” task has

an execution cost of 0.01 and takes 00:00:01 to exe-

cute.

Ground

truth

The cost and execution time for every task within the bot authentication microflow are: a cost of 0.01 and

execution time of 2 seconds for ‘Retrieve user credentials’, a cost of 0.02 and execution time of 5 seconds

for ‘Validate credentials’, a cost of 0.03 and execution time of 6 seconds for ‘Check access rights’ a cost of

0.01 and execution time of 1 second for ‘Create authentication log’, a cost of 0.01 and execution time of 1

second for ‘Check for multiple failed attempts’, a cost of 0.03 and execution time of 5 seconds for ‘Lock

account’, a cost of 0.01 and execution time of 1 second for ‘Increment failed attempts counter’, a cost of

0.02 and execution time of 2 seconds for ‘Notify user of account status’.

Response

relevancy
0.99 0.99

Factual

correctness
1.00 0.60

Semantic

similarity
0.99 0.96

Semantic

faithfulness
0.80 0.77

Table 4 illustrates a specific example where the GPT model is challenged to extract certain process

performance metrics from the BPMN process. Both responses grasp the core idea: to detail the cost and

execution time within “Bot authentication microflow”. Here, Case I accurately lists all eight tasks as

specified in the ground truth, achieving perfect factual correctness. In contrast, Case II only correctly

identifies four tasks and even mistakenly includes the “Activate bot” task, which does not belong to the

subprocess, resulting in a much lower factual correctness score. This difference arises because the XML

standard uses a closed-world schema, whereas the RDF export offers a more flexible and semantically

enriched network of associations.

4.2. Prompts on the Non-Explicit Minimalist Models

Building on the experiments outlined in Section 4.1, we now shift our focus to exploring minimalist,

non-explicit patterns. Using the same setup and evaluation metrics, we examine the patterns illustrated

in Figures 5 and 6 to uncover how these streamlined models – represented in RDF and BPMN XML –

perform under a diversity of queries that include various perspectives, such as temporal understanding,

participant involvement, interactions and associations.

Table 5

Comparative analysis of GPT-4’s responses on simple task sequence identification (Figure 5-a)

Prompt Identify the tasks in the order described in the process.

Criteria

Case I

(response generated by Ontotext GraphDB 10.8

using OpenAI’s GPT-4 model on RDF formatted

data)

Case II
(response generated by GPT-4 via API on BPMN

XML formatted data)

Response
The tasks in the order described in the process are A,

B, and C.

The tasks in the order described by the process are

Task A, Task B, and Task C.

Ground

truth
The tasks in the order described in the process are: A, B, C.

Response

relevancy
0.97 0.97

Factual

correctness
1.00 1.00

Semantic

similarity
0.99 0.98

Semantic

faithfulness
0.78 0.74

The prompt “Identify the tasks in the order described in the process” from Table 5 is straightforward,

asking GPT-4 to sequentially list the tasks from the BPMN model represented in Figure 5-a. Both re-

sponses correctly identify the tasks A, B and C, which accurately match the ground truth, resulting in

perfect factual correctness. The semantic similarity scores are also very high in spite of minor wording

differences. The semantic faithfulness scores indicate that the essential context from this pattern is well

captured; the slight drop in Case II is potentially due to the additional verbosity from the prefix “Task”,

which slightly alters the vector representation.

We also tested additional prompts on models from Figures 5-b, 5-e and 6-l, to assess whether GPT-4

can accurately handle temporal sequencing (as shown in Table 9), recognize branches (Table 10) and

spatial-temporal queries (Table 11). Since the responses were correct for both data formats in all three

scenarios – with scores similar to the ones in Table 5 – we have grouped these findings in the appendix.

Table 6

Comparative analysis of GPT-4’s responses on event identification and their trigger in a taskless sequence, without exempli-

fying possible trigger types (Figure 5-c)

Prompt
Identify all the events before the event Z, in the order executed in the process, and

their trigger.

Criteria

Case I

(response generated by Ontotext GraphDB 10.8

using OpenAI’s GPT-4 model on RDF formatted

data)

Case II
(response generated by GPT-4 via API on BPMN

XML formatted data)

Response

The events before event Z are, in the order executed

in the process: “Start Event (BPMN)-35353”, “X”,

and “Y”. The “Start Event (BPMN)-35353” is initi-

ated by the start of the process. Event “X” is trig-

gered by a message, as well as event “Y”.

The events before event Z are event Y and event X.

Event Y is triggered by a message event definition

with id “sid-8dd832f4-e8e5-4878-b075-

5012f1dfa9af”. Event X is also triggered by a mes-

sage event definition with id “sid-7699c4c7-51aa-

4401-813e-96d2a9cc4835”.

Ground

truth

The events before the event Z, in the order executed in the process, are: Start event, X and Y. The trigger

for Start is not specified. The trigger for X is a message. The trigger for Y is also a message.

Response

relevancy
0.93 0.92

Factual

correctness
0.40 0.33

Semantic

similarity
0.94 0.94

Semantic

faithfulness
0.79 0.72

Overall, the generated answers in both cases (Table 6) convey the same core meaning as the ground

truth, given the high semantic similarity scores. However, some key aspects are either missed, misrep-

resented or both. In Case I, the answer correctly identifies the start event along the subsequent events X

and Y, both triggered by messages (see Figure 5-c), but it also includes an extra detail about the trigger

of the start event that is not specified in the ground truth. Moreover, since the start event is not explicitly

labeled in the provided context like the rest of the events, GPT-4 refers to it using the full generic label

automatically assigned by the modeling tool (i.e., “Start Event (BPMN)-35353”), which differs from the

name used in the ground truth (i.e., just “Start event”).

In contrast, Case II’s XML-based response entirely disregards the start event. It also suggests that one

task triggers the next. Although this interpretation makes sense to some extent, it certainly does not

match what was expected in the ground truth/reference, leading to an even more significant drop in

factual correctness.

Table 7

Comparative analysis of GPT-4’s responses on event identification and their trigger in a taskless sequence, exemplifying pos-

sible trigger types (Figure 5-c)

Prompt

Identify all the events before the event Z, in the order executed in the process, and

their trigger (Cancel, Compensation, Conditional, Error, Escalation, Link, Mes-

sage, Signal, Timer).

Criteria

Case I

(response generated by Ontotext GraphDB 10.8

using OpenAI’s GPT-4 model on RDF formatted

data)

Case II
(response generated by GPT-4 via API on BPMN

XML formatted data)

Response

The events before the event Z are the “Start Event

(BPMN)-35353”, event X, and event Y. The Start

Event (BPMN)-35353 does not have any particular

triggers, event X is triggered by a message, and event

Y is also triggered by a message.

The events before event Z are event X and event Y.

Event X is an intermediate throw event triggered by

a message as indicated by the “messageEventDefini-

tion” tag. Event Y is an intermediate catch event also

triggered by a message as indicated by the “mes-

sageEventDefinition” tag.

Ground

truth

The events before the event Z, in the order executed in the process, are: Start event, X and Y. The trigger

for Start is not specified. The trigger for X is a message. The trigger for Y is also a message.

Response

relevancy
0.89 0.89

Factual

correctness
0.50 0.43

Semantic

similarity
0.94 0.92

Semantic

faithfulness
0.85 0.75

We tested on the same BPMN model (in Figure 5-c) with another prompt to see if a hint would boost

the quality of the generated answers. In the initial prompt (see Table 6), we simply asked for the events

before event Z and their triggers, while in the second prompt (see Table 7), we provided a list of possible

trigger types (Cancel, Compensation, Conditional, Error, Escalation, Link, Message, Signal, Timer) as

a hint. Regardless of the clue’s presence, the prompt was correctly answered in Case I that scored high

in both scenarios (Tables 6 and 7) regarding relevancy and semantic similarity. However, for the second

case, reducing the ambiguity in what constitutes a trigger, aided GPT-4 to provide more detailed answers

that are closer to the ground truth.

According to RAGAs, the relevancy metric is computed by generating alternative question variants

from the generated answer (called reverse-engineering) and then measuring how closely these recon-

structed questions match the original question/prompt using cosine similarity. In our example, the addi-

tional details (all possible trigger types) introduced in the original question may have slightly shifted the

focus of the prompt, making the generated response less aligned with some of the reconstructed question

variants, which could be potential factors that contribute to a slight decrease of the value of this metric

– from 0.93 to 0.89.

Table 8

Comparative analysis of GPT-4’s responses on boundary branching effect in the process (Figure 5-g)

Prompt How does the boundary message event m affect the process?

Criteria
CASE I

(response generated by Ontotext GraphDB 10.8 using

OpenAI’s GPT-4 model on RDF formatted data)

CASE II
(response generated by GPT-4 via API on

BPMN XML formatted data)

Response

The boundary message event "m" in this process acts as

an interrupting event. It disrupts the normal flow of the

process and directs it towards another process step. In

this case, after the event "m" happens, the process pro-

ceeds to Task D instead of continuing its normal se-

quence.

I do not know.

Ground

truth

If the boundary message event m arrives during the execution of the task B, this task is interrupted and task

D will be executed instead. After task D is completed, the process ends at the subsequent End event.

Response

relevancy
0.95 0.00

Factual

correctness
1.00 0.00

Semantic

similarity
0.94 0.70

Semantic

faithfulness
0.84 0.71

In the experiment described in Table 8, even though the RAG pipeline successfully retrieved the

complete BPMN process in XML format – as the process itself was relatively short and fell well within

the model’s input limits (a topic largely discussed in the scenario represented by Table 1) – GPT-4 still

responded with “I do not know.” when asked about the effect of a boundary message event. This out-

come is consistent with the behavior specified in the prompt template, namely “If you do not know the

answer to the following question, just say ‘I do not know.’ or ‘The provided context does not contain

enough information.’ and nothing else.”. While this demonstrates compliance with prompt instructions,

it also highlights a deeper limitation of using XML as input: its verbose, deeply nested structure, as well

as its lack of explicit semantic relationships between elements hinder GPT-4 from extracting and inter-

preting such nuanced process details. This contributes to the XML-based response scoring zero in both

relevancy and factual correctness.

Despite the XML-based response being simply “I do not know.”, its semantic similarity score remains

around 0.70. Research [38] has shown that even minimal expressions can carry rich semantic signals,

meaning that, even though “I do not know” contains almost no factual details, its vector embedding is

prone to capturing a generic signal of uncertainty, as embedding models like text-embedding-ada-002

are designed to “behave”. In our case, the ground truth describes a specific conditional process (inter-

ruption at task B leading to task D), which inherently involves a notion of deviation or uncertainty about

the normal flow, thus falling within a similar semantic domain as the generated answer’s. This shared

aspect of uncertainty, even though very broadly defined, could be the cause of a moderate similarity

score of 0.70, rather than something much lower, as one would expect. Similarly, semantic faithfulness

is computed using cosine similarity between the embeddings of the retrieved context and the generated

answer, which means that even a minimal response can yield a moderate score if it captures enough

high-level semantic features. Therefore, in similar abstention scenarios, any response with semantic

similarity and faithfulness scores below 0.76 can be considered unsatisfactory.

This phenomenon is also evident in our other, more challenging text queries – those that extend be-

yond simple task identification or basic sequence flows. In our parallel branching tests (Table 12), for

example, we asked whether a certain task could be executed if a preceding task, from a parallel branch,

had not been already executed and why that might be the case – with the correct answer being that the

task in question cannot be executed unless the previous task in the parallel branch has already been

completed. Similarly, our event branching test (see Table 13) examined if two tasks could be executed

concurrently, even if they originated from two separate branches emerging from a XOR event gateway

– where only one path is typically taken. The query referring to the compensation branching model (see

Table 14) evidenced in Figure 5-h, challenged GPT-4 to correctly identify the cause for the compensa-

tion flow, while our task collaboration tests (Tables 15 and 16) examined whether the model could

accurately depict interactions among participants in the process (marked by Message Flows in the

BPMN standard). Across these 5 scenarios, we observe that, with the increased complexity and nuanced

BPMN logic in such non-explicit models, the RDF-based approach always outperforms the XML-based

one.

Our final experiments on BPMN models involving event collaboration (Figure 6-k) and lane coordi-

nation with data (Figure 6-m) further solidify the idea that RDF provides a more detailed and semanti-

cally rich representation of BPMN models than XML. However, these experiments also produced some

rather intriguing scores that warrant some discussion.

Firstly, it is worth mentioning how Case I and Case II, in both scenarios (see Tables 17 and 18, re-

spectively), achieved a perfect relevancy score, even if Case II, unlike Case I, is only partially correct.

This high relevancy for Case II can be caused by the way the metric is calculated (explained in a previous

example – see Table 7). Looking at the results from Table 17, the generated answer for Case II mentions

only the event “E2” and does not explicitly reference the message “M1”. Keeping this in mind, the

generated questions from the generated answer are inclined to align closely with the original question –

specifically, “What does the start of the process executed by P2 depend on?” – which also does not

directly mention M1; we believe that this might impact the relevancy score, despite the factual details

being incomplete.

Secondly, the low to medium factual correctness scores, despite Case I giving fully correct answers

in both scenarios, might stem from the evaluation metric’s sensitivity to the granularity of the generated

claims. For instance, GPT-4 provided additional details from the retrieved context – such as the “Sub-

sequent” relationship from task B to task C or the “Data Association” linking a data object to a task (see

Table 18, Case I) – that are not explicitly required by the ground truth.

5. Discussion and Implications

In every prompt scenario (Table 1 – Table 18), the RDF-based representation (Case I) exhibits supe-

rior performance across almost all evaluation metrics. Built on explicit subject–predicate–object triples

that map out clear, interconnected relationships between BPMN elements, the RDF-represented pro-

cesses aid the OpenAI’s GPT-4 model in providing complete and accurate responses with high scores

in relevancy, factual correctness, semantic similarity and semantic faithfulness. In contrast, the BPMN

XML-based response was occasionally deficient, particularly in factual correctness. These behaviors are

observed in prompts requiring the extraction of temporal and conditional process details, where RDF

consistently captures the nuanced relationships inherent in BPMN models more effectively than BPMN

XML (with a more rigid format). These results underscore the importance of employing RDF as a means

to serialize BPMN processes, thereby reinforcing the notion that structured, semantically rich represen-

tations can enhance natural language process querying tasks. Table 19 highlights which case achieved

higher scores for each metric across all evaluation scenarios.

Table 19

Evaluation synthesis

Metric Overall comparison Notable examples

Response

relevancy

Case I generally scores higher com-

pared to Case II.

• Task and subprocess sequence inside a pool (Table 1);

• Branching scenarios: exclusive (Table 2), boundary (Table 8),

parallel (Table 12), event (Table 13), compensation (Table 14);

• Task and collapsed pool collaboration (Tables 15 and 16, respec-

tively);

• Lane coordination with data (Table 18).

Factual

correctness

Case I consistently outperforms

Case II, many times even by a sig-

nificant margin.

• Task and subprocess sequence inside a pool (Table 1);

• Task sequence inside a subprocess based on a condition (Table

3);

• Branching scenarios: exclusive (Table 2), boundary (Table 8),

parallel (Table 12), event (Table 13), compensation (Table 14);

• Task, collapsed pool and event collaboration (Tables 15, 16 and

17, respectively);

Semantic

similarity

Case I exhibits higher similarity

scores across all scenarios.
• All scenarios, including lane coordination with data processes

(Table 18).

Semantic

faithfulness

Case I is generally higher, alt-

hough, in one instance (Table 3),

the scores are nearly equal (Case I

= 0.77 vs. Case II = 0.78)

• All scenarios, except for task sequence inside a subprocess based

on a condition (Table 3).

Broader implications of these findings extend beyond the immediate context of BPMN process anal-

ysis. Enterprises may benefit from migrating toward semantically enriched process representations,

where the main purpose is not to have the process description as a closed world data structure to be

leveraged only by automation or simulation engines, but as a knowledge graph that adds on top of the

basic machine-readability requirement the possibility of semantic enrichment, interpretation and inte-

gration across future knowledge-based systems that leverage procedural knowledge available through

established notations such as BPMN.

Both tool vendors and standardization bodies may want to consider a shift from the XML-dominated

world of process interchange and serialization. In addition to tool-specific fine-tuning approaches for

BPMN-AI integration, providing semantic graph export/import options for BPMN models could unlock

or facilitate use cases pertaining to the BPM lifecycle. In various lifecycle phases it may be relevant to

achieve traceability and reasoning through semantic networks built around process descriptions, or to

semantically enrich process resources and workflow elements - e.g. with domain-specific taxonomies

pertaining to ESG (Environment-Social-Governance) [39] policies, building management systems [40]

or data access protocols [41]. Graph RAG patterns11, where the RAG context provided to LLMs is based

on knowledge graphs instead of document chunks, are thus also enabled for next-generation AI-driven

modeling environments. BPMN tools can evolve beyond diagram-focused modeling environments into

11 https://www.ontotext.com/knowledgehub/fundamentals/what-is-graph-rag/

BPM knowledge “hubs” ready to support process-centric LLM-powered knowledge management (at

design-time) as well as execution features (at run-time). Current implementations are only available as

experimental artifacts, typically developed under a Design Science framework. Further implications that

propagate across the entire BPM lifecycle must consider all possibilities enabled by this shift – i.e. for

semantics-driven enactment, monitoring, discovery, with a potential for agile domain-specificity to be

added as a semantic layer over the core process or trace descriptions.

6. Conclusions

Through the comparative use of RDF-encoded semantic graphs and XML-encoded diagrams, the ex-

periments in this paper report nuanced treatments for BPMN models subjected to OpenAI’s GPT-4 as

procedural knowledge. Our findings, substantiated by the scores obtained using the RAGAs framework,

indicate that RDF exports provide a more open-ended and relationship-aware approach to process inter-

pretation, compared to the standard XML export which appears to be treated as a closed-world data

structure, even though the RDF version employs a non-standard, tool-specific, process description vo-

cabulary.

The study has inherent limitations due to the fast evolution and stochastic nature of LLM services –

not only variations between different versions, but also between work sessions are noticeable. Therefore,

this work is not intended to be an evaluation of capabilities of a certain product, but a proposition of an

interpretation and analysis protocol towards an augmented version of the BPM lifecycle as proposed by

[11]. In repeated trials, response variability remains unavoidable due to the non-deterministic sampling

mechanisms of LLMs. This poses limitations in terms of output distribution, making it challenging to

guarantee that future executions will yield similar results. Thus, findings should be interpreted as indic-

ative rather than exhaustive. Although this GPT model represented a strong benchmark at the time when

experiments were initiated, the absence of comparisons with others (Claude, Gemini, Mistral etc.) limits

the generalizability of findings across the broader LLM landscape. Finally, there is inherent bias given

by the fact that the RDF and XML serializations available do not share an identical vocabulary – in our

future work we aim to assess the terminological sensitivity of LLM responses, while working with the

same serialization format but manipulating its metamodel wording.

We are also reluctant in stating that these are experiments on “process understanding” due to the

inherent limitations of what tokenized language models “understand” as reported by recent investiga-

tions [42]; consequently we are treating process descriptions as information structures that can be que-

ried and navigated along explicit references by the pattern matching mechanisms of LLMs, hence our

current focus on process serializations instead of computer vision or conversational modeling.

Future work will be invested in further exploration of the possible synergies between the BPM lifecy-

cle and LLM services, specifically on prompting strategies that can generate such process serializations

besides interpreting them. We also see opportunities involving domain-specific knowledge graphs,

meta-models and XML/RDF schemas that could yield process interpretations which are better contex-

tualized in relation to the complexity of the prompt and the knowledge graph patterns that can act as

process context. Pre-training and fine-tuning of public GPT services based on domain-specific

knowledge is another direction to be explored towards a hybridization of model-driven engineering and

prompt engineering in service of enterprise-tailored business process management.

References

[1] M. Dumas, M. La Rosa, J. Mendling and H. A. Reijers, Fundamentals of business process management, 2nd ed., Springer

Berlin Heidelberg (2018), doi: 10.1007/978-3-662-56509-4.

[2] Camunda (n.d.), What is BPMN? Business Process Model and Notation, https://camunda.com/bpmn/.

[3] R. Buchmann et al., Large language models: Expectations for semantics-driven systems engineering, Data & Knowledge

Engineering, 152 (2024), 10234, doi: 10.1016/j.datak.2024.102324.

[4] OMILAB NPO, Bee-Up for Education (2024). https://bee-up.omilab.org/activities/bee-up/.

[5] S. Bachhofner, E. Kiesling, K. Revoredo, P. Waibel and A. Polleres, Automated Process Knowledge Graph Construction

from BPMN Models, Database and Expert Systems Applications. DEXA 2022. Lecture Notes in Computer Science,

13426 (2022), 32–47, doi: 10.1007/978-3-031-12423-5_3.

[6] Ș. Uifălean, A. M. Ghiran and R. A. Buchmann, Employing Graph Databases for Business Process Management and

Representation, Advances in Information Systems Development. ISD 2022. Lecture Notes in Information Systems and

Organisation, 63 (2023), 73–92, doi: 10.1007/978-3-031-32418-5_5.

[7] I. Compagnucci, F. Corradini, F. Fornari and B. Re, A Study on the Usage of the BPMN Notation for Designing Process

Collaboration, Choreography, and Conversation Models, Business & Information systems Engineering, 66 (2023), 43–

66, doi: 10.1007/s12599-023-00818-7.

[8] H. G. Fill, P. Fettke and J. Köpke, Conceptual Modeling and Large Language Models: Impressions From First Experi-

ments With ChatGPT, Enterprise Modelling and Information Systems Architectures Journal, 18 (2023), 1–15, doi:

10.18417/emisa.18.3.
[9] D. N. Dolha and R. A. Buchmann, Generative AI for BPMN Process Analysis: Experiments with Multi-modal Process

Representations, Perspectives in Business Informatics Research. BIR 2024. Lecture Notes in Business Information Pro-

cessing, 529 (2024), 19–35, doi: 10.1007/978-3-031-71333-0_2.

[10] B. H. Guntur, Automating Data Flow Diagram Generation from User Stories Using Large Language Models, 7th Work-

shop on Natural Language Processing for Requirements Engineering, https://hal.science/hal-04525925/.

[11] M. Vidgof, S. Bachhofner and J. Mendling, Large Language Models for Business Process Management: Opportunities

and Challenges, doi: 10.48550/arXiv.2307.09923.

[12] BOC GmbH, ADOxx AQL query language, https://www.adoxx.org/live/adoxx-query-language-aql.

[13] M. Grohs, L. Abb, N. Elsayed and J. Rehse, Large Language Models can accomplish Business Process Management

Tasks, Business Process Management Workshops. BPM 2023. Lecture Notes in Business Information Processing, 492

(2023), 453–465, doi: 10.1007/978-3-031-50974-2_34.

[14] A. Jalali, Graph-Based Process Mining, Process Mining Workshops. ICPM 2020. Lecture Notes in Business Information

Processing, 406 (2021), 273–285, doi: 10.1007/978-3-030-72693-5_21.

[15] OpenAI, GPT-4, https://openai.com/research/gpt-4.

[16] A. Polyvyanyy, Process Querying: Methods, Techniques, and Applications, Process Querying Methods (2021), 511–524,

doi: 10.1007/978-3-030-92875-9_18.

[17] H. Kourani, A. Berti, D. Schuster and W. M. P. van der Aalst, Process Modeling with Large Language Models, Enterprise,

Business-Process and Information Systems Modeling. BPMDS EMMSAD 2024. Lecture Notes in Business Information

Processing, 511 (2024), 229–244, doi: 10.1007/978-3-031-61007-3_18.

[18] K. Busch, A. Rochlitzer, D. Sola and H. Leopold, Just Tell Me: Prompt Engineering in Business Process Management,

Enterprise, Business-Process and Information Systems Modeling. BPMDS EMMSAD 2023. Lecture Notes in Business

Information Processing, 479 (2023), 3–11, doi: 10.1007/978-3-031-34241-7_1.

[19] S. Ayad and F. Alsayoud, Prompt engineering techniques for semantic enhancement in business process models, Business

Process Management Journal, 30(7) (2024), 2611–2641, doi: 10.1108/bpmj-02-2024-0108.

[20] A. Gutschmidt and B. Nast, Assessing Model Quality Using Large Language Models, The Practice of Enterprise Model-

ing. PoEM 2024. Lecture Notes in Business Information Processing, 538 (2025), 105–122, doi: 10.1007/978-3-031-

77908-4_7.

[21] K. Jasińska, M. Lewicz and M. Rostalski, Digitization of the enterprise – prospects for process automation with using

RPA and GPT integration, Procedia Computer Science, 225 (2023), 3243–3254, doi: 10.1016/j.procs.2023.10.318.

[22] M. Shahin, F. Chen, A. Hosseinzadeh, M. Maghanaki and A. Eghbalian, A Novel Approach to Voice of Customer Ex-

traction using GPT-3.5 Turbo: Linking Advanced NLP and Lean Six Sigma 4.0, International Journal of Advanced Man-

ufacturing Technology, 131 (2024), 3615–3630, doi: 10.1007/s00170-024-13167-w.

[23] L. Yang, H. Chen, Z. Li, X. Ding and X. Wu, Give Us the Facts: Enhancing Large Language Models with Knowledge

Graphs for Fact-aware Language Modeling, IEEE Transactions on Knowledge and Data Engineering, 36(7) (2024), 3091–

3110, doi: 10.1109/TKDE.2024.3360454.

[24] N. Klievtsova, J. V. Benzin, T. Kampik, J. Mangler and S. Rinderle-Ma, Conversational Process Modelling: State of the

Art, Applications, and Implications in Practice, Business Process Management Forum. BPM 2023. Lecture Notes in Busi-

ness Information Processing, 490 (2023), 319–336, doi: 10.1007/978-3-031-41623-1_19.

[25] P. Bellan, M. Dragoni and C. Ghidini, Extracting Business Process Entities and Relations from Text Using Pre-trained

Language Models and In-Context Learning, Enterprise Design, Operations, and Computing. EDOC 2022. Lecture Notes

in Computer Science, 13585 (2022), 182–199, doi: 10.1007/978-3-031-17604-3_11.

[26] Y. Sui, M. Zhou, Mi. Zhou, S. Han and D. Zhang, Table Meets LLM: Can Large Language Models Understand Structured

Table Data? A Benchmark and Empirical Study, Proceedings of the 17th ACM International Conference on Web Search

and Data Mining (2023), 645–654, doi: 10.1145/3616855.3635752.

[27] D. Karagiannis, R. A. Buchmann and W. Utz, The OMiLAB Digital Innovation environment: Agile conceptual models

to bridge business value with Digital and Physical Twins for Product-Service Systems development, Computers in Indus-

try, 138 (2022), doi: 10.1016/j.compind.2022.103631.

[28] SAP Signavio, SAP Signavio Process Transformation Suite, Academic Edition, https://www.signavio.com/academic-

and-research-alliances/.

[29] R. A. Buchmann and D. Karagiannis, Pattern-based Transformation of Diagrammatic Conceptual Models for Semantic

Enrichment in the Web of Data, Proceedings of Knowledge-Based and Intelligent Information & Engineering Systems

19th Annual Conference. KES-2015, 60 (2015), 150–159, doi: 10.1016/j.procs.2015.08.114.

[30] W3C Community Draft Report, RDF-star and SPARQL-star, https://w3c.github.io/rdf-star/cg-spec/editors_draft.html.

[31] Ontotext, What is GraphDB?, https://graphdb.ontotext.com/documentation/10.8/index.html.

[32] V. I. R. Iga and G. C. Silaghi, LLMs for Knowledge-Graphs Enhanced Task-Oriented Dialogue Systems: Challenges and

Opportunities, Advanced Information Systems Engineering Workshops. CAiSE 2024. Lecture Notes in Business Infor-

mation Processing, 521 (2024), 168–179, doi: 10.1007/978-3-031-61003-5_15.

[33] S. Schulhoff et al., The Prompt Report: A Systematic Survey of Prompting Techniques, ArXiv (2024), doi:

10.48550/arXiv.2406.06608.

[34] P. Lewis et al., Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks, ArXiv (2020), doi:

10.48550/arXiv.2005.11401.

[35] S. Es, J. James, L. Espinosa-Anke and S. Schockaert, RAGAs: Automated Evaluation of Retrieval Augmented Generation,

Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics: System

Demonstrations (2024), 150–158, https://aclanthology.org/2024.eacl-demo.16.

[36] OpenAI, Introducing text and code embeddings, https://openai.com/index/introducing-text-and-code-embeddings/.

[37] OpenAI, New and improved embedding model, https://openai.com/index/new-and-improved-embedding-model/.

[38] J. O. Krugmann and J. Hartmann, Sentiment Analysis in the Age of Generative AI, Customer Needs and Solutions, 11(3)

(2024), 1–11, doi: 10.1007/s40547-024-00143-4.

[39] C. C. Osman, A. M. Ghiran and R. A. Buchmann, Towards a knowledge management capability for ESG accounting with

the help of enterprise modeling and knowledge graphs, Companion Proceedings of the 17th IFIP WG 8.1 Working Con-

ference on the Practice of Enterprise Modeling Forum, M4S, FACETE, AEM, Tools and Demos co-located with PoEM

2024, https://ceur-ws.org/Vol-3855/forum12.pdf.

[40] E. Laurenzi, J. Allan, N. Campos and S. Stoller, An Ontology-Based Meta-modelling Approach for Semantic-Driven

Building Management Systems, Advanced Information Systems Engineering Workshops. CAiSE 2024. Lecture Notes in

Business Information Processing, 521 (2024), 200–211, doi: 10.1007/978-3-031-61003-5_18.

[41] A. Chis and A. M. Ghiran, BPMN Extension for Multi-Protocol DataOrchestration, Domain-Specific Conceptual Mod-

eling (2022), 639–656, doi: 10.1007/978-3-030-93547-4_28.

[42] W. S. Saba, Stochastic LLMs do not understand language: towards symbolic, explainable and ontologically based LLMs,

Conceptual modeling. ER 2023. Lecture Notes in Computer Science, 14320 (2023), 3–19, doi: 10.1007/978-3-031-47262-

6_1.

Appendix

Additional test queries on non-explicit minimalist BPMN models:

Table 9

Comparative analysis of GPT-4’s responses on task identification in a tasks/events sequence (Figure 5-b)

Prompt Name all the tasks after the event X.

Criteria
Case I

(response generated by Ontotext GraphDB 10.8 using

OpenAI’s GPT-4 model on RDF formatted data)

Case II

(response generated by GPT-4 via API on

BPMN XML formatted data)

Response
The tasks after the event X are Task B and Task C. The tasks after the event X are task B and task

C.

Ground

truth
The tasks after the event X are B and C.

Response

relevancy
0.96 0.96

Factual

correctness
1.00 1.00

Semantic

similarity
0.99 0.99

Semantic

faithfulness
0.81 0.74

Table 10

Comparative analysis of GPT-4’s responses on task identification in a decision branching process (Figure 5-e)

Prompt
Which are the tasks that are executed until the end of the process if condition v3 is

true?

Criteria Case I Case II

Response
If condition v3 is true, then the tasks executed until the

end of the process are “C” and “Y”.

If condition v3 is true, task “C” and task “Y” are

executed until the end of the process.

Ground

truth

The tasks that are executed until the end of the process if condition v3 is true are C and Y.

Response

relevancy
0.99 0.99

Factual

correctness
1.00 1.00

Semantic

similarity
0.98 0.96

Semantic

faithfulness
0.79 0.75

Table 11

Comparative analysis of GPT-4’s responses on task identification and sequence in a task collaboration process (Figure 6-l)

Prompt Inside which lane is the task D? Which task comes before the task D?

Criteria Case I Case II

Response
The task D is inside the lane labeled “L2”. The task that

comes before task D is task C.

Task D is inside the lane named “L2”. The task

that comes before task D is task C.

Ground

truth
The task D is inside the lane L2. The task that comes before the task D is the task C.

Response

relevancy
0.95 0.96

Factual

correctness
1.00 1.00

Semantic

similarity
0.99 0.98

Semantic

faithfulness
0.82 0.74

Table 12

Comparative analysis of GPT-4’s responses on task sequence identification in a parallel branching process (Figure 5-d)

Prompt
Can the task Y be executed if the task A was not previously executed? Why or

why not?

Criteria
Case I

(response generated by Ontotext GraphDB 10.8 using

OpenAI’s GPT-4 model on RDF formatted data)

Case II

(response generated by GPT-4 via API on

BPMN XML formatted data)

Response

No, the task Y cannot be executed if the task A was not

previously executed. This is because, according to the

information provided, task Y comes after a Non-exclu-

sive Gateway (converging), and task A is one of the tasks

that lead up to this gateway. This means that task A must

be completed before the process can continue and reach

task Y.

The provided context does not contain enough

information.

Ground

truth

The task Y cannot be executed if the task A was not previously executed, because the parallel non-exclusive

gateway converges all the incoming sequence flows from the tasks A, B and C before executing the task Y.

Response

relevancy
0.98 0.00

Factual

correctness
1.00 0.00

Semantic

similarity
0.96 0.75

Semantic

faithfulness
0.80 0.75

Table 13

Comparative analysis of GPT-4’s responses on task sequence identification in an event branching process (Figure 5-f)

Prompt Can the tasks A and B be executed simultaneously? Why or why not?

Criteria
Case I

(response generated by Ontotext GraphDB 10.8 using

OpenAI’s GPT-4 model on RDF formatted data)

Case II

(response generated by GPT-4 via API on

BPMN XML formatted data)

Response

No, the tasks A and B cannot be executed simultane-

ously. The diagram describes a workflow where task B

can only follow after the completion of an intermediate

event (e2), which is one of the possible next steps after

an exclusive event-based gateway (e?). Task A also fol-

lows after a different intermediate event (e1), which is

another possible outcome of the same gateway. Since an

exclusive gateway only allows for one sequence to fol-

low, tasks A and B cannot be executed at the same time.

The provided context does not contain enough

information.

Ground

truth

No, the tasks A and B cannot be executed simultaneously, because at the exclusive event-based gateway

labeled ‘e?’, the decision is based on which of the succeeding intermediate event (e1, e2 or e3) occurs first

and only one of the paths can be taken.

Response

relevancy
0.96 0.00

Factual

correctness
0.71 0.00

Semantic

similarity
0.95 0.74

Semantic

faithfulness
0.83 0.75

Table 14

Comparative analysis of GPT-4’s responses on compensation flow identification in a compensation branching process (Fig-

ure 5-h)

Prompt What triggers the compensation flow in the current process?

Criteria
Case I

(response generated by Ontotext GraphDB 10.8 using

OpenAI’s GPT-4 model on RDF formatted data)

Case II

(response generated by GPT-4 via API on

BPMN XML formatted data)

Response

The compensation flow in the current process is trig-

gered by the End Event labelled as “e”, which has its

compensation attribute set to “Yes”.

I do not know.

Ground

truth

The compensation flow in the current process is triggered by the compensation end event e.

Response

relevancy
1.00 0.00

Factual

correctness
0.50 0.00

Semantic

similarity
0.96 0.71

Semantic

faithfulness
0.79 0.72

Table 15

Comparative analysis of GPT-4’s responses on task execution identification in a task collaboration process (Figure 6-i)

Prompt
After the task B is executed, what conditions need to be met for task C to be exe-

cuted?

Criteria
Case I

(response generated by Ontotext GraphDB 10.8 using

OpenAI’s GPT-4 model on RDF formatted data)

Case II

(response generated by GPT-4 via API on

BPMN XML formatted data)

Response

The execution of task C requires the completion of task

F as depicted by the message flow M2 in this model. Af-

ter the completion of task B, task F should be executed

for task C to take place.

I do not know.

Ground

truth

After the task B is executed, the execution of task C is conditioned by the arrival of the message M2 produced

by the task F after its execution.

Response

relevancy
0.90 0.00

Factual

correctness
0.75 0.00

Semantic

similarity
0.94 0.72

Semantic

faithfulness
0.83 0.72

Table 16

Comparative analysis of GPT-4’s responses on participant interaction in a collapsed pool collaboration process (Figure 6-j)

Prompt How does the participant P1 interact with other participants of the process?

Criteria
Case I

(response generated by Ontotext GraphDB 10.8 using

OpenAI’s GPT-4 model on RDF formatted data)

Case II

(response generated by GPT-4 via API on

BPMN XML formatted data)

Response

The participant P1 interacts with other participants

through tasks and message flows. P1 initiates a message

flow “M1” from task “B” to participant P2. Later, P2

sends back an interaction “M2” to task “D”. Therefore,

participant P1 is able to both send and receive interac-

tions within the process.

I do not know.

Ground

truth

The participant P1 interacts with other participants of the process by sending the message M1 from the task

B to the participant P2 and receiving the message M2 from the participant P2 to the task D.

Response

relevancy
0.99 0.00

Factual

correctness
1.00 0.00

Semantic

similarity
0.96 0.74

Semantic

faithfulness
0.82 0.71

Table 17

Comparative analysis of GPT-4’s responses on participant interaction and dependencies in an event collaboration process

(Figure 6-k)

Prompt What does the start of the process executed by P2 depend on?

Criteria
Case I

(response generated by Ontotext GraphDB 10.8 using

OpenAI’s GPT-4 model on RDF formatted data)

Case II

(response generated by GPT-4 via API on

BPMN XML formatted data)

Response

The start of the process executed by P2 depends on the

Intermediate Event E1 from the process executed by P1.

This is indicated by the message flow M1 which runs

from E1 to the start event E2 in P2.

The start of the process executed by P2 depends

on the event E2 as indicated by the startEvent

id=”sid-87CD25C7-AA75-4667-AF37-

755E03DC9681” with name=”E2”.

Ground

truth
The start of the process executed by P2 depends on the arrival of message M1 sent by P1 from E1.

Response

relevancy
1.00 1.00

Factual

correctness
0.33 0.00

Semantic

similarity
0.94 0.90

Semantic

faithfulness
0.79 0.81

Table 18

Comparative analysis of GPT-4’s responses on task input/output in a lane coordination with data process (Figure 6-m)

Prompt What is the execution of task C conditioned by?

Criteria
Case I

(response generated by Ontotext GraphDB 10.8 using

OpenAI’s GPT-4 model on RDF formatted data)

Case II

(response generated by GPT-4 via API on

BPMN XML formatted data)

Response

The execution of task C is conditioned by the completion

of task B and the availability of data object d1, as indi-

cated by the 'Subsequent' relationship from task B to task

C and the 'Data Association' from data object d1 to task

C.

The execution of task C is conditioned by the

completion of task B, as indicated by the incom-

ing sequence flow from task B to task C in the

provided context.

Ground

truth

The execution of task C is conditioned by the execution and completion of task B and by data object d1 as

input for task C.

Response

relevancy
0.97 0.95

Factual

correctness
0.50 0.50

Semantic

similarity
0.96 0.93

Semantic

faithfulness
0.84 0.75

