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Abstract

Bias is a pervasive issue in Machine Learning, particularly in domains like automated
decision-making (ADM), where it can lead to unfair treatment of individuals or
groups based on sensitive attributes. Accounting for it requires knowledge and
reasoning about how bias can affect the decision process and how to constrain
this process in order to decrease its vulnerability to societal and statistical bias.
In the field of bias mitigation, a broad set of constraining techniques has been
developed to address the issue of biased predictions. Usually, such a technique is an
architecture or procedure particularly designed for a use case or a distinct definition of
fairness. In application however, practitioners face complex realities requiring flexible,
complex reasoning about constraints, yet the link to integrative approaches that
combine symbolic reasoning with logical constraints and statistical learning is still
missing. Although there exist several neurosymbolic architectures able to incorporate
knowledge and constraints into a model, only few attempts have been made to use
them to apply fairness constraints to model predictions. This work tries to bridge
this gap by mapping neurosymbolic architectures to bias mitigation techniques. We
categorize these architectures based on their potential application in pre-processing,
in-processing, and post-processing. By doing so, we aim to provide a structured
overview of the current set of existing neurosymbolic architectures for bias mitigation,
and highlight important underexplored directions and promising research avenues at
the intersection of neurosymbolic Al and algorithmic fairness.
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2 Neurosymbolic Artificial Intelligence XX(X)

1 Introduction

Machine learning models are becoming more and more omnipresent as algorithmic
decision makers in various fields, such as public policy making, healthcare and hiring.
These domains, in which decisions directly concern the life of people, crucially require
trustworthy models. In the context of machine learning, trustworthiness comprises
aspects such as interpretability (the decision process is understandable), accountability
(the decision process is underlying clear responsibilities and strict governance), fairness
(the decision process is not systematically discriminating people), robustness (the
decision process is not vulnerable to data shifts and data poisoning), safety (the
decision does not endanger anybody) or privacy (the decision does not provide
any insight about a person). Fairness stands out among these concepts, as this is
an aspect of trustworthiness that ADM actually promises to enhance compared to
human decisions. Instead of the bias of the human decision maker, algorithmic data-
driven decisions are prone to data bias. Therefore, the field of fair machine learning
concerns itself with how to detect and mitigate bias. While bias detection queries
whether data or a prediction satisfies a fairness constraint, bias mitigation employs
fairness constraints on the data, the prediction model or the output. Among the
various different approaches to bias mitigation, many techniques are catering a specific
fairness notion, i.e., are tied to one single formal definition of fairness (Caton and Haas
2024; Hort et al. 2022).

Fairness in Automated Decision Making. In ADM practice, e.g., in public policy
settings, trustworthiness and fairness in particular are a complex and evolving issue,
with nuanced requirements that may change over time. The desired ADM system
in this domain is supposed to reliably support decision-making, while operating in
an area which often includes multiple stakeholders, competing policy goals, dynamic
data streams, as well as complex sources of data biases next to specific regulatory
constraints (Abaigar et al. 2024). Furthermore, implementing an algorithmic system
in administrative practice commonly requires considerable (time) investments and
institutional resources, e.g., in terms of building the technological infrastructure and
the training of staff (Wirtz et al. 2019). In such settings, flexible and transparent
approaches to algorithmic fairness are critical, as switching between different modeling
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procedures once a system is in place can incur considerable costs and institutional
overhead.

In order to achieve this flexibility and transparency, an interface between statistical
(neural) models on the one side and a declarative formalization language for symbolic
constraints is required. Researchers in the field of neurosymbolic Al have proposed
numerous architectures that incorporate the understandable, reasonable nature of
symbols and statistical models that can handle noise and uncertainty. Neurosymbolic
models hence provide this flexible interface between formalized declarative constraints
and their implementation into the machine learning procedure. Most bias mitigation
approaches encode constraints directly into the machine learning procedure and thus
implement specific fairness notions for a distinct set of use cases. In contrast, a well-
designed neurosymbolic bias mitigation method promises to be agnostic regarding the
definition of fairness and the bias model, i.e. assumptions about variable dependencies,
of the domain. In summary, by concretizing normative concerns into formal rules that
a prediction system should adhere to, the field of algorithmic fairness naturally lends
itself to the integration of symbolic reasoning and can strongly benefit from the rich
set of architectures proposed in neurosymbolic Al.

Another interesting aspect brought on the table by the flexibility of neurosymbolic
models, is the opportunity to easily compare the behavior of a predictor under varying
constraints. This is important for ADM practitioners, since usually there is no clear
case for one distinct fairness notion or one bias model (e.g. Chouldechova 2017;
Mitchell et al. 2021). Hence, being able to experiment with different notions and
assumptions pre-deployment, e.g. by adding or removing a logical constraint, is
desirable.

Symbolic Reasoning and Neural Inference. Symbolic reasoning algorithms process
symbols, i.e. discrete meaningful units. Symbolic models usually consists of a
knowledge base containing formalized facts and a solver to perform deduction, which
is called reasoning. Thus, they are inherently interpretable as their processes, as well as
all data representations are explicit and interpretable. The biggest issue in symbolic
systems is the grounding problem, i.e. to find an adequate mapping between the
continuous real world and the assumed discrete world of the model.

Neural models are complex arithmetic functions with many parameters that process
continuous data, transforming it to latent intermediate representations. They require
(almost) no prior knowledge as they perform induction on the data, which is optimized
according to a loss function. The parameters, which are optimized during the training
process represent implicit knowledge that is not interpretable for humans. Hence, their
biggest issues comprise interpretability and other aspects of trustworthiness, such as
accountability and fairness. Another weakness of neural systems is complex reasoning.

The integration of these two worlds can be seen as an approach to enhance
trustworthiness and complex reasoning abilities of neural models or as a promising
approach to symbol grounding and the integration of latent/implicit subsymbolic
knowledge.
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Contribution. Michel-Delétie and Sarker (2024) argue that research on
neurosymbolic trustworthy models is focused on leveraging symbolic properties for
interpretability and robustness, while lacking on fairness and privacy. Especially
regarding fairness, they point towards untapped potential, while stating that
neurosymbolic approaches are often not flagged as such. To our knowledge, there
are only three approaches, which explicitly use neurosymbolic models for fairness
(Wagner and d'Avila Garcez 2021; Greco et al. 2023; Heilmann et al. 2025). All of
them emphasize the potential of neurosymbolic Al as a flexible, generalized approach
to bias mitigation.

In this work, we aim to systematically bridge the gap between these two domains.
Thereby, we point at existing implicitly neurosymbolic approaches to bias mitigation,
and propose conceptual architectures, which we find interesting for future research.
The incentives of this work are to

1. deliver an argument for the integration of neural and symbolic systems in ethical
and fair Al.

2. connect two almost completely disjoint domains and inspire interdisciplinary
research.

3. give an overview over existing (neurosymbolic) fairness and bias mitigation
research

4. propose a set of neurosymbolic architectures for bias mitigation for future
research.

2 Algorithmic Fairness

Fairness in machine learning is a complex multidisciplinary topic that has been studied
from various perspectives, including computer science, ethics, law, and social sciences
(Baumann and Rumberger 2018). In the following, we provide a brief overview of
the most common definitions of fairness in machine learning, as well as a summary
of the discussion about these definitions and their associated metrics. For a more
comprehensive overview, we refer to surveys by Caton and Haas (2024), Hort et al.
(2022) or Mitchell et al. (2021).

Many wide-spread notions of fairness focus on binary classification tasks with one
binary protected attribute. Protected attributes may identify different demographic
groups as defined in anti-discrimination law (Simson et al. 2024), but can also refer to
ascribed or socially constructed characteristics more broadly. Next to group fairness for
binary classification, there are also definitions for multiclass classification, regression
tasks and multiple, as well as many-valued, protected attributes. In the following, we
try to generalize the different definitions as good as possible over a broad spectrum
of data and predictors.
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2.1 Group Fairness

Group fairness notions require that certain statistical measures of the predictor’s
performance are equal across different demographic groups A defined by a set of
protected attributes. Common (types of) group fairness definitions include e.g.:

Independence. The prediction Y is independent of the demographic group. This
concept is also known as demographic parity or statistical parity. Independence means
that the predictions are distributed equally across groups.

P(Y[A=a)=P(Y|A=d) Va,d € A (1)

Equality of Accuracy. The accuracy of the predictor Y is independent of the
demographic group A. This means that the predictor has the same accuracy across
different demographic groups.

PY=Y|A=a)=P(Y =Y|A=d) Va,d €A (2)

Separation. The prediction Y and the demographic group A are independent, given
the true label Y. This is also known as equalized odds (Hardt et al. 2016). Separation
means that the predictor has the same error rates across different demographic groups.

PY|Y =y, A=a)=P(Y|Y =y, A=d) Va,bc AyecY (3)

Sufficiency. The true label Y and the demographic group A are independent,
given the prediction Y. This is also known as predictive parity (Chouldechova 2017).
Sufficiency means that the predictions have the same informative value across different
demographic groups.

PYIV =j,A=a)=P(Y|V = jg,A=d) VabeAgjey (4

Analogously to the precision-recall trade-off, sufficiency and separation have been
shown to be mutually exclusive, except in the case of perfect prediction or if the
demographic group is independent of the true label (Chouldechova 2017)

2.2 Multi-Group Fairness

Multi-group fairness notions strike a balance between group and individual fairness
by extending group-based fairness definitions to larger collections of subgroups and
their intersections. Next to rich subgroup fairness Kearns et al. (2018), multi-
calibration Hébert-Johnson et al. (2018) and multi-accuracy Kim et al. (2019)
represent prominent types of multi-group fairness notions. For a given distribution
D and class of functions C, multi-accuracy requires that the predicted scores of a
predictor p : X — [0, 1] are unbiased (up to «) across every subpopulation defined by
celC:

[Ex vy [e(X) - (Y =5(X) ]| < a (5)
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In contrast to group fairness, the subpopulations may be defined by arbitrary
complex combinations of attributes using a function of class C, and are not
restricted to discrete classes. Multi-calibration provides a stronger version of multi-
accuracy by requiring calibration (rather than just unbiasedness) across collections of
subpopulations. Both notions have been studied in various contexts and have proven
their value in settings beyond algorithmic fairness (Dwork et al. 2021; Gopalan et al.
2022; Kim et al. 2022; Gopalan et al. 2023b,a; Kern et al. 2024; Pfisterer et al. 2021).

2.3 Individual Fairness

Individual fairness notions require that similar individuals are treated similarly by the
predictor, while different individuals are treated differently. Mitchell et al. (2021) call
this definition metric fairness. One of the most common definitions proposed by of
individual fairness Dwork et al. (2012) is the Lipschitz condition.

Tk € R:Y(x1,91), (z2,72) € (X,Y) : dx (1, 22) < k- dy (91, 72) (6)

This definition requires a suitable distance function on the input space X and the
output space Y. However, finding such a distance function is often difficult and
requires domain knowledge. Furthermore, it requires a suitable scaling factor k, which
is usually unknown. Finding k is usually implemented as a minimization problem
(Dwork et al. 2012).

2.4 Causal Fairness

Causal fairness notions require that the predictor is not influenced by the protected
attribute A or any of its descendants in a causal graph. This means that the
predictor should not be affected by any causal path from the protected attribute
to the prediction. The most common way to formalize causal fairness is through
counterfactuals, i.e., what would the prediction be if the demographic group were
different, but everything else remained the same. Kusner et al. (2017) proposed
counterfactual fairness in different variants:

Individual Counterfactual Fairness. The outcome Y of a predictor should be the
same in the actual world X as in a counterfactual world X', in which the individual
belongs to a different demographic group. This notion is similar to individual fairness,
but instead of a distance function, it is based on causal interventions.

yw = gac’ V(.’L‘, JJ/) € (X, X/) (7)

Counterfactual Parity. The distribution of the predictor's outcome should be the
same in the actual world as in a counterfactual world, in which the individual belongs
to a different demographic group. The notion is quite similar to independence, but it
is based on causal interventions instead of statistical measures.

P(Y]X) = P(Y|X') (8)
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3 Bias Mitigation

In this section, we give a condensed, yet structured, overview over bias mitigation
techniques, based on comprehensive surveys by Hort et al. (2022); Caton and Haas
(2024). With rising concerns about algorithmic fairness in the last two decades,
a collection of techniques to reduce bias in machine learning inference has been
developed. These can be roughly categorized by the stage of the learning process,
they are applied in: pre-processing (before training), in-processing (during training),
and post-processing (after training). In many cases however, this categorization is
ambiguous, as some methods are applied during multiple stages of the process. Also,
these techniques are not exclusive, but can be applied in combination.

3.1 Pre-Processing

Pre-processing techniques aim to remove the bias from the training data, assuming
that a predictor trained on fair data is fair. Usually, they come with the advantage
that they are model agnostic, as they are mainly concerned with data. Furthermore,
Akintande et al. (2025) argue that bias mitigation at a later stage is vulnerable against
systematic label bias. Kusner et al. (2017) add to that argument by stating that a
model trained on the ideal dataset with perfect accuracy will satisfy independence,
separation, calibration, and counterfactual fairness.

We try to classify pre-processing techniques by the data dimension (feature space
or instance space) they apply manipulations to and add a third family that constructs
a mapping towards a latent fair representation of the entire data. Finally, we discuss
fair data generation approaches.

Feature Manipulation. In this family of pre-processing techniques, ground truth
labels (relabeling) or predictive feature values (perturbation) are adjusted. For binary
relabeling, massaging is an established method (e.g. Kamiran and Calders 2009;
Calders et al. 2009; Zliobaite et al. 2011), which ranks instances and flips those closest
to the decision boundary. This method is based on the assumption that unprivileged
individuals scratch this boundary from below. Multiclass relabeling and perturbation
of confounded features are often realized by a causal intervention on the feature
distribution (e.g. Feldman et al. 2015; Bothmann et al. 2023). Another approach
by Lum and Johndrow (2016) proposes a transformation to achieve independence
between any feature and the protected attributes.

Instead of manipulating feature values, some researchers introduced latent variables
as balanced proxies for labels (e.g. Chakraborty et al. 2022; Calders and Verwer 2010)
or group memberships (e.g. Diana et al. 2022; Oneto et al. 2019; Suriyakumar et al.
2023) that follow a given fairness constraint. Similarly, causal inference researchers
estimate latent variables as unobserved confounders in their model (Grari et al. 2022;
Kilbertus et al. 2017; Madras et al. 2019).

Finally, there is some literature on dropping sensitive and/or proxy features (e.g.
Grgic-Hlaca et al. 2018; Madhavan and Wadhwa 2020; Wang and Huang 2019).
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Instance Manipulation. Instances can be reweighed, to reduce the impact of
potentially biased - and increase the impact of unbiased data points (e.g. Calders et al.
2009; Chai and Wang 2022; Li and Liu 2022), or sampled to reduce misrepresentation
of protected groups. The latter can be realized as downsampling, i.e. removal of
instances (e.g. Chakraborty et al. 2020; Salimi et al. 2019; Wang et al. 2022),
upsampling, i.e. duplication or synthetization of instances (e.g. Chakraborty et al.
2021; Amend and Spurlock 2021; Chakraborty et al. 2022), preferential sampling, i.e.
duplication or removal of instances close to the decision border (e.g. Kamiran and
Calders 2011; Hu et al. 2020; Zliobaite et al. 2011). Sharma et al. (2020) supplemented
data by sampling counterfactual instances using a “realism function” regarding the
original data. Abusitta et al. (2019) used a Generative Adverserial Networks approach
(GAN) to synthesize additional instances for each population group.

Latent Representation. A vyet different approach than instance - or feature
manipulation is the transformation of an original dataset into an intermediate/latent
representation that satisfies fairness constraints and yet retains (almost) all
information of the dataset. Starting from a framework called Learning Fair
Representations (Zemel et al. 2013), many studies have been conducted around this
approach, e.g., using optimization (e.g. Calmon et al. 2017; Lahoti et al. 2019; Zehlike
et al. 2020), adversarial learning (e.g. Madras et al. 2018a; Qi et al. 2022; Wu et al.
2022), dimensionality reduction (Kamani et al. 2022; Pérez-Suay et al. 2017; Samadi
et al. 2018) or with variational autoencoders (e.g. Creager et al. 2019; Liu et al. 2023;
Wu et al. 2022)

Data Generation. Starting from a non-neural algorithm (Zhang et al. 2017), Xu
et al. (2018, 2019a,b) developed a GAN-based framework, in which datasets are
generated from scratch, while one adversary is trained to discriminate fake from real
data and another is trained to guess a protected attribute. Other groups have proposed
similar GAN-based approaches to fair data generation (Jang et al. 2021; Rajabi and
Garibay 2022).

Robertson et al. (2025) modeled Structured Causal Models (SCM), representing
different types causal influence of protected attributes, as Multi Layer Perceptrons
(MLP), in which this causal influence can be controlled by a dropout layer. With
these, they created two synthetic datasets, one biased and one counterfactual unbiased
version, that are later compared in the loss function. This is a textbook example of
counterfactual fairness, in which the causal influence of a protected attribute on other
features is modeled and controlled in its entirety.

3.2 In-Processing Techniques

Bias mitigation methods that are applied during training address the model instead of
the data. Instead of simulating a fictitious world by adjusting the data, the model is
constrained to intrinsically learn unbiased predictions on potentially biased data (Wan
et al. 2023). Thus, this family of techniques is beneficial in terms of external validity
of a model, as it is trained on real-world data and learns how to handle real-world
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bias. Furthermore, this approach provides the practical perk of being applicable to
pre-trained models (Wan et al. 2023).

Existing in-processing techniques can be roughly classified by the location of their
application: the loss function or the training algorithm.

Fairness-Aware Loss Functions. Given a model that may be trained with gradient
descent, a quite straight-forward approach is to add an additive regularization term
to the loss function. This means that a discriminatory prediction leads to a higher
loss and is thus penalized. Hence, one can optimize a model regarding accuracy as
well as a metric based on a distinct notion of fairness, e.g. independence, separation,
or the distance between a prediction and its counterfactual counterpart (Robertson
et al. 2025; Tavakol 2020).

Other models may be regularized differently, e.g. decision trees can be modified to
incorporate fairness metrics as splitting criteria (e.g. Kamiran et al. 2010; Ranzato
et al. 2021; Zhang and Weiss 2023).

An uprising approach to loss functions is adversarial learning (Dalvi et al. 2004).
Here, an adversary model is introduced, which is trained to exploit errors of the main
model. Its loss is modeled as a minimax function, which the main model wants to
minimize, while its adversary aims to maximize. In the fairness context, the adversary
usually tries to guess a protected attribute from the prediction of a model (e.g. Beutel
et al. 2017; Raff and Sylvester 2018; Sadeghi et al. 2019). This is an operationalization
of the group fairness notion of independence.

In the taxonomy by Kautz (2022), there is a distinct class of integration, written as
Neurosymbolic, that comprises methods, which incorporate symbolic rules into the loss
function of a neural network. Widespread frameworks of this class are LTNs (Serafini
and d'Avila Garcez 2016) as described in Section 4. As one of the first works on
neurosymbolic fairness, Wagner and d'Avila Garcez (2021) proposed an LTN that
incorporates group fairness constraints in first-order logic (FOL). Heilmann et al.
(2025) extended this approach with the notion of counterfactual fairness.

Fairness-Aware Training Algorithms. A method for accurate predictions that pays
tribute to group fairness is model composition. A straight-forward way of this
is training multiple models for each population subgroup (e.g., privileged and
unprivileged) (e.g. Calders and Verwer 2010; Oneto et al. 2019; Pleiss et al. 2017;
Suriyakumar et al. 2023). Instead of just picking the outcome of the regarding
predictor, predictions can be aggregated in an ensemble fashion, so that multiple
models with different fairness or accuracy goals can be taken into account (e.g. Liu
and Vicente 2022; Mishler and Kennedy 2022; Valdivia et al. 2021).

Adjusted learning on the other hand, provides a set of techniques to alter or
recreate the learning procedure. Usually, these methods look at critical data points
with respect to a fairness metric and treat them differently. E.g. Noriega-Campero
et al. (2019); Anahideh et al. (2022) used active learning methods that query for more
information on these data points to retrain them, Madras et al. (2018b) proposed a
rejection learning approach to learn, when to defer from making a prediction, while
Hébert-Johnson et al. (2018) proposed a boosting-like algorithm for multicalibration.
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Other research focused on hyperparameter tuning (e.g. Chakraborty et al. 2020, 2019;
Valdivia et al. 2021).

3.3 Post-Processing Techniques

Post-processing techniques assume a completely trained model that can make biased
decisions. They are rather concerned about the (hard) correction of input, model or
output towards an unbiased prediction than imposing (soft) constraints on the learning
environment of the model. Lohia et al. (2019) argue that post-processing techniques
are becoming especially useful nowadays, because the model training and deployment
are often decoupled. Hence, a model may be pre-trained by a third party and only
accessible as a black-box API. In this case, pre- or in-processing techniques are not
applicable.

Input Correction. Hort et al. (2022) argue that input correction uses the same set
of techniques as pre-processing, e.g. perturbation (Adler et al. 2018; Li et al. 2022),
since it adjusts the input data. However, it is applied to test data instead of training
data.

Model Correction. Similar to in-processing techniques, model correction methods
adjust the model itself. However, instead of adjusting the initial loss function or
learning procedure, they fine-tune or directly manipulate the parameters of successfully
trained model. E.g. Savani et al. (2020) proposed three techniques to adjust the
weights of a pre-trained neural network to accomodate group fairness metrics:
random weight perturbation, layerwise optimization, and adversarial fine-tuning. A
much cited and further extended approach by Hardt et al. (2016) uses a linear
optimzation algorithm to minimally adjust a classifier to satisfy equality of opportunity
or equalized odds. Pleiss et al. (2017) on the other hand split a trained classifier into
multiple models for each population subgroup and adjusted their decision boundaries
individually to achieve calibration. Kim et al. (2019) proposed a boosting-algorithm
to iteratively adjust a model to improve accuracy for certain subgroups.

Output Correction. At the latest stage of the machine learning pipeline, the output
can be adjusted. This is often done analogously to the preprocessing approach of
relabeling. The selection of instances to be relabeled requires another model, e.g.
a ranking of instances close to the decision border (Kamiran et al. 2012, 2018),
group-dependent decision thresholds (e.g. Pentyala et al. 2022; losifidis et al. 2020),
a model optimized to find instances likely to be discriminated (Lohia et al. 2019), or
a counterfactual world, which the prediction is aligned to (Chiappa 2019).

4 Neurosymbolic Architectures

Numerous frameworks, which integrate neural inference and symbolic reasoning have
already been developed. Kautz (2022) proposed a taxonomy to classify these by the
type of their integrations. This taxonomy is now widely used to structure surveys (e.g.
Bhuyan et al. 2024; Wan et al. 2024). In the following, we provide a brief overview
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over these architecture types. For more details on single approaches, we refer to more
comprehensive surveys, e.g. by Bhuyan et al. (2024) and Wan et al. (2024).

Type 1: Symbolic— Neuro— Symbolic. In this architecture type, integration is
understood as translation. Symbols are translated to vectors that can be processed
by a neural network. The continuous output of this network is finally discretized
to symbols again. The classical example for this approach is the current standard
approach to NLP that uses word embeddings like word2vec (Mikolov et al. 2013) or
glove (Pennington et al. 2014).

Type 2: Symbolic[Neuro]. This type uses neural models as functions that are called
by a symbolic solver. E.g. AlphaGo (Silver et al. 2016), the first model to beat a
human champion at the game Go, integrated neural heuristics into Monte Carlo Tree
Search. In general this method is promising for NP-hard problems, which are solvable
by symbolic reasoning, but for which the search space is too large to be explored
exhaustively. The neural model can be used as an oracle to prune the search space
and thus speed up the search process.

Type 3: Neuro|Symbolic. This architecture type employs neural and symbolic
models as coroutines in a pipeline. These coroutines have disjoint equal-levelled tasks
E.g. DeepProblLog (Manhaeve et al. 2018) uses a neural model to generate a set of
candidate rules, which are then evaluated by a symbolic solver. The symbolic solver
can then provide feedback to the neural model, which can be used to improve the
rule generation process.

Type 4: Neuro:Symbolic— Neuro. A common example for this is the work of Lample
and Charton (2020), who proposed a rigorous learning procedure for transformer
models to validly transform math formulae. Thus, the neural model itself can perform
complex symbolic reasoning steps. In general, this category comprises methods that
adjust the weights, the architecture or the learning procedure of a neural model, so
that it can do certain symbolic deduction without any other reasoner.

Type 5: Neurosympoiic. This type is becoming more and more popular as a method
to add semantic constraints to a loss functions. A common example here are Logic
Tensor Networks (LTN) (Serafini and d'Avila Garcez 2016), which use fuzzy first-
order logic to create differentiable axiomatic loss functions. Neurosympolic techniques
are effective at employing soft constraints during the learning process.

Type 6: Neuro[Symbolic]. Based on cognitive dual process theories (e.g. Stanovich
and West 2000; Kahneman 2003), this type uses a neural encoder to produce a
latent symbolic representation of the data, which a reasoner transforms and forwards
to a neural decoder. Conversely to type 2, the symbolic abstraction is embedded
in a neural model here. E.g. Asai and Fukunaga (2018) developed a neurosymbolic
solver for 8-puzzles that works exactly like this. This category of methods is often
emphasized to be the one with the highest potential as it mimics human cognition:
a fast, associative system is doing implicit processing that is evaluated, refined, and
completed by a slower, explicit system.
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5 Neurosymbolic Architectures for Bias Mitigation

In this section, we discuss how the different classes of neurosymbolic architectures
by Kautz (2022) can be used for bias mitigation. Along the way, we classify existing
approaches and propose potential future directions (see Table 1). Since we currently
do not see a use case for type 1 neurosymbolic architectures in bias mitigation, they
do not occur further on in this section.

Table 1. Proposal of architectures for bias mitigation. Each row represents a
neurosymbolic architecture of a distinct type (see Section 4), that we propose as a bias
mitigation method at a specific stage (see Section 3). All of these proposals are elaborated
on in Section 5. We introduce the term Fairness-Aware Model here as a technique
integrating fairness constraints directly into the model architecture

Type Architecture Bias Mitigation Method  Reference

S[N] — Output Correction —

N|S — Output Correction —

N:S—N SCM-based MLP ~ Data Generation Hollmann et al. (2023)
N:S—N LNN Fairness-Aware Model —

N:S—N Differentiable ILP Fairness-Aware Model; —
Model Correction

Ns LTN Fairness-Aware Loss Wagner and d’'Avila Garcez
Function (2021); Greco et al. (2023);
Heilmann et al. (2025)
Ns Generative Adver- Data Generation —
sarial LTN
NI[S] — Latent Representation; —

Data Generation

5.1 Symbolic[Neuro] and Neuro|Symbolic Bias Mitigation

The Symbolic[Neuro] and Neuro|Symbolic architectures are quite similar, as they
both consist of two distinct independent parts, one neural and one symbolic part.
The difference is that in Symbolic[Neuro], the symbolic part is the main driver and
the neural part is a subroutine, while in Neuro|Symbolic, the neural part is the main
driver and the symbolic part is a subroutine. We will discuss them together, as it is
sometimes hard to distinguish between the role of a co- or a subroutine.

As these classes consists of two independent submodels, their architecture is not
suitable for any technique that aims to directly alter the prediction model or its learning
procedure. However, the symbolic co-routine can be used to relabel the output of
a neural model. While naturally being classified as a post-processing method, this
approach would be flagged as a pre-processing technique if the output of the model
is a generated dataset that is then relabeled.

Chiappa (2019) proposed a method to adjust the output of a predictor to satisfy
counterfactual fairness. They use a causal model to generate counterfactuals and
adjust the prediction of a model towards its counterfactual counterpart. Though the
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reasoning part of this approach is small, it demonstrates the potential of symbolic
methods to post-process the output of a neural model.

Such approaches allow for potentially more powerful and precise corrections than
e.g. group-dependent thresholds. Furthermore, unlike a statistical bias detector, they
provide an interpretable and accountable component: the neural model can make
accurate predictions, while the symbolic model ensures that the predictions adhere to
prespecified fairness criteria. This approach might be particularly suitable for scenarios
where the bias in the data is complex and requires reasoning about multiple attributes.

5.2 Neurosympolic Bias Mitigation

Neurosymbolic architectures are neural models that incorporate symbolic rules into the
loss function of a neural model. Thus, they regularize the learning procedure of a
neural network with symbolic axioms, leading to softly imposed fairness constraints.

5.2.1 Logic Tensor Networks with Fairness Constraints The probably most
prominent Neurosymboiic framework are Logic Tensor Networks (Serafini and d’Avila
Garcez 2016) as mentioned in Section 4. They incorporate FOL axioms into the loss
function of a neural network by interpreting logical symbols as differentiable fuzzy
functions and predicates. Thus, the truth value of a formula can be evaluated in a
continuous space and used as a loss term. Wagner and d'Avila Garcez (2021) as well
as Greco et al. (2023) used LTNs as a means to include fairness constraints as FOL
axioms in the loss of a neural network. Additionally to an accuracy axiom, they used
the group fairness metrics demographic parity and disparate impact. Heilmann et al.
(2025) added the notion of counterfactual fairness to that approach.

However, much more is possible, as LTNs allow for any constraint that can be
formalized in FOL. Consider the following signature*:

¥ =(0,{y/1,a/1,cf/1,d/2,P/1,GuessA/1},{= /2,< /2, 1/2}) (9)

*A signature ¥ = (C,F,P) represents the non-logical symbols (constants C, functions F and
predicates P) of a FOL language.
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Table 2. Description of the functions and predicates of the FOL signature for fairness
constraints (Equation 9).

Function symbols (neural functions in bold):

y(v) (get the ground truth label of a sample v)

a(v) (get the sensitive attribute of a sample v)

cf(v) (get the counterfactual of a sample v)

dv (v1,v2) (distance function, tailored to the variable type V')
P(v) (prediction on a sample v)

GuessA(v) (guess the sensitive attribute from a prediction v)

Predicate symbols:

u=uv (infix equality predicate)
u<wv (infix less-or-equal-than predicate)
ulv (u is independent from v: (Vvi,v2 € v : % = %)

Using this signature with a dataset X and the set of possible outcomes Y, we can
formalize a variety of fairness constraints as FOL axioms (see also Figure 1). E.g.:

Accuracy: Vz € X : P(z) =y(x) (10)

Equality of Accuracy: Vx € X : (P(x) =y(x))Lla(z) (11)
Independence: Vz € X : P(x)Lla(x) (12)
Separation: Vx € X,y €Y :y(z) =y = P(x)la(x) (13)

Sufficiency: Vx e X,y €Y :P(z) =y = y(z)la(z) (14)

Adversarial Fairness: Va € X : GuessA(P(x))Lla(z) (15)
Counterfactual Fairness: Vz € X : P(z) = P(cf(z)) (16)

dkeR: Vo, 20 € X ¢
dx(z1,22) < k-dy(P(x1),P(22))

Individual fairness, or Lipschitz fairness, resembles a special case, as this axiom
performs an existential quantification over an infinite space (k € R). This is not
feasible for symbolic solvers, but can be formulated as an optimization problem as
proposed by e.g. Dwork et al. (2012). Hence, incorporating this axiom in an LTN
requires a hybrid approach, where the LTN optimizes the neural model to satisfy the
other axioms, while another optimization procedure searches for a suitable k.

Lipschitz Fairness: (17)

5.2.2 Generative Adversarial Logic Tensor Networks With the above defined axioms,
LTNs can be used as an effective in-processing bias mitigation method. However, a
direction that has not yet been explored is the integration LTNs with GANs for fair
data generation. The idea behind this integration is to incorporate FOL constraints in
addition to the discriminator network into the loss function of a neural data generator.
Therefore, some constraints need to be reformulated, after introducing a neural
predicate D representing the discriminator and the neural function G representing
the generator, from which we sample datasets. E.g.:
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(a) Independence

(d) Adversarial Fairness (e) Counterfactual Fairness

(f) Lipschitz Condition

Figure 1. Axioms of Algorithmic Fairness: nodes with a bold outline represent universally

quantified variables, nodes with a dashed outline represent existentially quantified variables.
Functions are represented as rectangles, predicates as diamonds, variables as circles. Neural
components are emphasized in green. Each graph uses the signature outlined in Equation 9.

Accuracy:

Equality of Accuracy:
Independence:
Adversarial Fairness:

Counterfactual Fairness:

Lipschitz Fairness:

VY € G: —D(x)

Vz € G:a(x)L(y(z) =y(z))

Ve e G:a(x)Lly(z)

Vz € G : GuessA(y(z))La(x)

Vo € G:y(z) = y(cf(z))

dk eR:Vxy,20 € G:

dx (21, 22) < k-dy(y(21), y(22))

(18
(19
(20
(21
(22

~— ~— ~— ~— ~—

(23)

An important note regarding LTNs also argued by Heilmann et al. (2025) is that
they, while optimizing towards fairness constraints, can not guarantee that these
constraints are fully satisfied. Instead, they optimize the degree to which these
constraints are satisfied. This is a consequence of the fuzzy semantics of LTNs, which
allow for a differentiable optimization procedure. Hence, LTNs are best suited for
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8 | X2 | X2 | X3z Y2

a3 | X413 | X3 | X33 Y3

Figure 2. Neuro:Symbolic—Neuro Architecture for SCM-based Data Generation as
proposed by Hollmann et al. (2023): An MLP based on an SCM models the causal
relationships between features as arithmetic functions. For each instance, a counterfactual
version is created by dropping the influence (red arrows) of a sensitive attribute A.

scenarios where approximate fairness is sufficient, but constraints do not need to be
satisfied for every single individual.

5.3 Neuro:Symbolic— Neuro Bias Mitigation

Architectures of these class are characterized by a neural model that is rigorously
following symbolic rules. Hence, they are particularly suitable for predictions that must
satisfy a set of hard constraints for every single prediction. These predictions can be
the output of a model or an adjusted or newly generated dataset. Thus, this class
of architectures is suitable for both pre- and in-processing bias mitigation techniques.
The differentiable ILP framework we discuss in Subsection 5.3.3 is exception, though,
since it might be a future direction for post-processing model correction.

5.3.1 SCM Data Generation As mentioned in Section 3.1, Hollmann et al. (2023)
developped a method to generate synthetic data using SCMs that are represented as
MLPs. Robertson et al. (2025) used this approach to generate alternate versions
of a dataset, one with unwanted dependencies and one without. Though never
proposed as such, this SCM-based data generation approach is a type 4 neurosymbolic
(Neuro:Symbolic—Neuro) method as (neural) MLPs are used as a representation
of (symbolic) SCMs to model causal relationships between features as arithmetic
functions. What makes this approach unique, is that Robertson et al. (2025) use
it to create numerous fair datasets from scratch to feed them to a TabPFN model
(Hollmann et al. 2023) for pretraining. The TabPFN training process can in turn as
well be seen as type 4 neurosymbolic, because a neural foundation model is trained
on entirely synthetic datasets, each of which produced by —and thus representing—
a structured causal model. Hence, it is rigorously trained to model structured
causal relationships. In summary, this approach uses a neurosymbolic data generation
approach as a subroutine of a neurosymbolic training procedure.

5.3.2 Logical Neural Networks with Fairness Constraints Logical Neural Networks
(LNNSs) as introduced by Riegel et al. (2020) are a type 4 neurosymbolic approach
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to integrate FOL constraints in the architecture of a neural network. In contrast
to LTNs, LNNs do not optimize towards a degree of constraint satisfaction, but
instead guarantee that the constraints are fully satisfied (Riegel et al. 2020). This is
achieved by a different architecture and semantics. LNNs represent logical formulas as
a network of neurons, where each neuron represents a logical connective. The weights
of the neurons are constrained to represent the truth tables of the corresponding
logical operators. Hence, LNNs can be used to incorporate the same FOL axioms, as
formulated in Section 5.2.1, in the architecture of a neural network.

To the best of our knowledge, LNNs have not yet been used for bias mitigation.
However, they might be a promising in-processing approach, as they can guarantee
that the incorporated fairness constraints are fully satisfied. This makes them
particularly suitable for scenarios where a constraint is critical and must be guaranteed
for every single individual.

5.3.3 Differentiable ILP to Learn Interpretable Rules Another type 4 neurosymbolic
method is the use of differentiable architectures for Inductive Logic Programming
(ILP) in order to handle noisy and erroneous data. E.g. Evans and Grefenstette (2018)
developed such a framework called OILP. Their method learns logical rules from data
using a neural network, which makes the ILP procedure less prone to noise. The
learned rules can then be used to make predictions on new data. This approach can
be used for in- and post-processing bias mitigation by learning rules about relations
in data. For once, constraints ca be fed as to the model as background knowledge.
Additionally, biased rules can be removed post-hoc by hand or by another model. This
approach is particularly interesting, because it learns an interpretable symbolic model
of relationships between data attributes that is interpretable and correctable.

However, this method requires a suitable dataset that contains enough information
to learn meaningful rules. Evans and Grefenstette (2018) demonstrate the efficacy
of their approach on ILP benchmarks, but to the best of our knowledge it has not
yet been applied to datasets in fairness-relevant contexts. Furthermore, as in ILP a
FOL predicate is learned, differentiable ILP algorithms are limited to binary decisions.
Cropper et al. (2022) additionally criticize that ILP systems are non-trivial to handle
and that in general, the applicability of these algorithms in real world scenarios is yet
to prove.

5.4 Neuro[Symbolic] Bias Mitigation

Neuro[Symbolic] architectures are characterized by a neural model that creates a
latent representation, which is then processed by a symbolic model before being
decoded by another neural network. This architecture is particularly suitable for
scenarios where the input data is high-dimensional and unstructured, e.g. images or
text, but the prediction task requires reasoning about structured relationships between
attributes. As a toy example, consider a video dataset of numerous actors applying
for a role: a neural encoder can create a latent representation of the videos, which
is then adjusted by a symbolic model, e.g. an SCM that removes the influence of
detected sensitive attributes, before a neural decoder either makes the final prediction
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Figure 3. Exemplary Neuro[Symbolic] Architecture: A neural encoder creates a latent
representation of relationships between features, which is then processed by layer that
represents a structured causal model that eliminates relationships that contain bias (i.e.
influences of the protected attribute A) before being processed further. Each column of the
matrix in this example represents a relationship between two features as specified by the
SCM. Relationships coded in red in the SCM and its vector representation are removed
from the matrix.

or recreates a debiased version of the video (see Figure 3). This way, the reasoning
model can ensure that the latent representation follows fairness requirements, while
the neural model can handle the complexity of the input data and the prediction task.
This class of architectures is suitable for both in-processing and pre-processing bias
mitigation, as the prediction task can also be data generation.

There are current similar approaches using variational autoencoders with
sophisticated optimization procedures to learn fair data representations (e.g. Creager
et al. 2019; Liu et al. 2023; Wu et al. 2022). Instead of adjusting the loss function
for each new fair approach regarding another fairness notion, these approaches could
be extended by logical reasoning. Hence an encoder does not have to be a jack of all
trades, but merely learns an intermediate representation that can be interpreted and
transformed by a symbolic reasoner. Thus, the same neural model could be used for
arbitrary constraints without retraining, while the learning procedure is simpler and
the debiasing process is interpretable and controllable.

6 Summary and Propositions

In this work, we provided an overview of neurosymbolic architectures and bias
mitigation techniques, and discussed how these two fields can be integrated to
create novel bias mitigation methods. Thereby, we argue that different classes of
neurosymbolic architectures are suited for different stages of bias mitigation: pre-
processing, in-processing, and post-processing. We highlighted existing and potential
approaches that utilize neurosymbolic methods for fairness, and discussed their
strengths and limitations.
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6.1 Claims

Symbolic reasoning provides a means to formalize arbitrary complex constraints.
As discussed in Section 5.2.1, many notions proposed in algorithmic fairness can be
formalized and composed in FOL. This allows for the integration of these fairness
notions into neurosymbolic architectures that support FOL, such as LTNs or LNNs.
Another powerful symbolic framework which is widely used are SCMs, which can
model causal relationships between features and thus enable the formalization of
causal fairness notions, such as counterfactual fairness.

Neurosymbolic Al provides a unifying interface that can accommodate a wide
range of fairness notions. Most methods for bias mitigation are designed to address a
specific fairness notion, which limits their applicability in scenarios where multiple or
alternative notions of fairness are required. Neurosymbolic architectures, on the other
hand, provide a flexible framework that can integrate various symbolic representations
of fairness notions, allowing for the development of more versatile and adaptable bias
mitigation techniques.

Neurosymbolic architectures are a valuable asset on the path towards trustworthy
Al. Integrating symbolic reasoning into machine learning models is not only a
promising approach for bias mitigation by incorporating constraints, but also for
enhancing other aspects of trustworthiness, such as interpretability and robustness.
Symbolic reasoning can enhance interpretability by providing clear, rule-based
explanations for decisions. Additionally, symbolic constraints can improve robustness
by enforcing consistency with a symbolic system. Neurosymbolic model that are more
interpretable and controllable can be considered more accountable, as their decisions
can be better understood and scrutinized.

These advantages are, however, limited to specific architectures. While e.g. JILP
learns an entirely symbolic decision model, other architectures, such as LTNs, use
symbolic rules in their training process but provide a black-box neural model at
inference time.

Different classes of neurosymbolic architectures are suited for different stages of bias
mitigation. As discussed in Section 5, different classes of neurosymbolic architectures
have different strengths and weaknesses, which make them more or less suitable for
different stages of bias mitigation.

In summary, it is important to note that both whether to use one of the
proposed architectures and which one to use depends on the specific use case and
requirements. The choice of architecture should be guided by the nature of the data
and task objective, the complexity of the fairness constraints, and the desired level of
interpretability and robustness.

6.2 Conclusion

Bias mitigation lacks a generic flexible approach to encoding declarative constraints
into the machine learning process. Neurosymbolic models are developed to integrate
declarative symbolic knowledge, e.g. constraints, with neural processing.
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Our contribution is a first step towards a systematic understanding of how
neurosymbolic architectures can be leveraged for bias mitigation in machine learning.
By categorizing neurosymbolic architectures and analyzing their applicability to
different stages of bias mitigation, we provide an interdisciplinary foundation for
researchers and practitioners to explore and develop novel methods that integrate
symbolic reasoning with machine learning to address fairness concerns. Thereby, we
hope to pave the way for flexible, interpretable and robust methods against machine
learning discrimination.
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