
Empirical Analysis of
Chain-of-Thought and
Solver-Augmented
Large Language
Models for Deductive
Reasoning

Journal Title
XX(X):2–32
©The Author(s) 2016
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Ya Wang1,2, Raja Havish Seggoju1 and Adrian Paschke 1,2

Abstract
Large language models (LLMs) have demonstrated remarkable capabilities in
multi-step reasoning, yet fundamental questions remain about their ability to perform
reliable deductive reasoning. Two contrasting paradigms have emerged: chain-of-
thought (CoT) prompting, which treats LLMs as self-contained reasoners, and solver-
augmented approaches, which use LLMs as semantic parsers to translate problems
into formal logic for symbolic execution. We present a systematic comparison of
these approaches under strict single-pass evaluation across three established
benchmarks (ProofWriter, PrOntoQA, LogicalDeduction) and controlled synthetic
datasets. Our findings reveal three key insights: (1) On standard benchmarks, solver
augmentation yields minimal improvements (less than 2%) over zero-shot CoT for
state-of-the-art models like GPT-5 and Claude-Sonnet-4, suggesting benchmark
saturation; (2) Mid-sized open-source models (14–32B) match proprietary model
performance when solver-augmented, with the primary challenge shifting from
generating valid syntax (small models) to accurate semantic parsing (larger models);
(3) On synthetic datasets with controlled difficulty variations, solver-augmented
methods demonstrate superior robustness, maintaining 76.7% accuracy retention at
extreme reasoning depths (14–17 steps) compared to 62.2% for CoT, and showing
greater resilience to distracting facts and rules. These results indicate that while
CoT-augmented LLMs achieve strong performance on deductive reasoning tasks up
to 5 hops, solver augmentation remains valuable for deeper multi-hop deduction and
safety-critical applications requiring robustness and verifiable inference.

The code accompanying this work is publicly available at https://zenodo.org/
records/17243434.

Keywords
Hybrid neuro-symbolic systems, Large language models, Chain-of-thought
reasoning, Solver augmentation, First-order logic, Deductive reasoning

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

https://zenodo.org/records/17243434
https://zenodo.org/records/17243434

2 Journal Title XX(X)

Introduction
Large language models (LLMs) have transformed natural-language technologies,
delivering striking gains in instruction following, tool use, program synthesis, and
multi-step problem solving (Chen et al. 2021; Chung et al. 2022; Schick et al.
2023). Much of this progress has come from reasoning-oriented prompting and post-
training: chain-of-thought (CoT) prompting and its zero-shot variant elicit stepwise
rationales (Wei et al. 2022; Kojima et al. 2022), while supervised and reinforcement-
style fine-tuning (SFT/RFT) further amplifies the tendency to generate intermediate
steps and verify them internally. Despite these successes, a central question remains:
do LLMs truly perform reliable deductive reasoning? Early evidence points to important
gaps. Creswell et al. (2022) show that models handle single-step inference reasonably
well but break down when even basic multi-step chains must be composed. More
recently, Liu et al. (2025) report near-random performance on structured deductive
reasoning (e.g., syllogisms; Grok3-Think 51.86%, OpenAI o4-mini 54.85%) on multiple-
choice questions. Motivated by these findings, we focus this study on first-order logic
(FOL) deduction—a setting where conclusions should follow necessarily from explicit
premises. Two contrasting paradigms have emerged for enhancing deductive reasoning
in LLMs. The first approach, now dominant in industry practice (Fig. 1, right), treats
the LLM as a self-contained reasoner: after SFT/RFT on problems with step-by-step
solutions, the model generates intermediate tokens and a final answer without external
tools. This paradigm assumes that human-like reasoning can emerge from token-to-
token generation, rather than relying on explicit search as in classic AI. The second
approach, prevalent in recent academic work (Fig. 1, left), treats symbolic solvers as
tools and the LLM as a semantic parser that converts natural language problems into
formal specifications, typically in first-order logic (FOL)—a representation that LLMs
produce more reliably than other logic-programming dialects such as ASP or Pyke (Lam
et al. 2024; Beiser et al. 2025). These formalizations are then translated into solver-
specific syntax and executed by symbolic engines such as Z3, Prolog, or SAT solvers.
Recent systems including Logic-LM (Pan et al. 2023), LINC (Olausson et al. 2023), and
CLOVER (Ryu et al. 2024) have demonstrated this approach, reporting substantial gains
over CoT prompting on deductive reasoning benchmarks. Having outlined these two
paradigms, it is clear that each comes with trade-offs. CoT-style post-training is tool-free,
broadly applicable, and easy to deploy; solver-augmented pipelines offer faithfulness,

1Fraunhofer Institute for Open Communication Systems, DE
2 Free University of Berlin, DE

Corresponding author:
Adrian Paschke, Fraunhofer Institute for Open Communication Systems, Kaiserin-Augusta-Allee 31, 10589
Berlin, DE
Email: adrian.paschke@fokus.fraunhofer.de

Prepared using sagej.cls

Wang and Seggoju 3

verifiability, and auditability, but require an external engine and a strict NL-to-logic
interface. With rapid improvements in reasoning-centric training, three questions are
now open. (i) Do solver-augmented systems still provide advantages on standard FOL
deduction benchmarks? (ii) If the LLM’s role is primarily semantic parsing, can smaller
open-source models substitute for very large proprietary ones without accuracy loss?
(iii) Beyond benchmarks that many models might saturate, how do the two approaches
compare under systematically varied structural difficulty, including reasoning depth,
distractions, and logical complexity? In this paper, we present a systematic comparison
of CoT-augmented versus solver-augmented LLMs under controlled conditions that
ensure fair comparison. We evaluate across three deductive benchmarks (ProofWriter,
PrOntoQA, LogicalDeduction) and controlled synthetic datasets that vary reasoning
depth and introduce entity-level and rule/fact-level distractions.

Intermediate Steps / Tokens

FOL Formalization (LLM)

Translation Layer

Symbolic Solver

CoT Augmented LLMSolver Augmented LLM

SFT/RFT

Figure 1. Comparison of solver-augmented and CoT-augmented LLMs. Left: In the
solver-augmented setting, the LLM first produces a formalization in first-order logic (FOL),
which is translated into solver-specific syntax and executed once by a symbolic solver. Right:
In the CoT-augmented setting, the LLM directly generates intermediate reasoning steps
(often enhanced by post-training methods such as supervised or reinforcement fine-tuning),
and produces a final answer without invoking an external solver.

Key Findings.

1. Benchmarks are near ceiling under single-pass evaluation. On public FOL
benchmarks (ProofWriter-Depth 5, PrOntoQA-Depth 5, LogicalDeduction), solver
augmentation yields at most small improvements over zero-shot CoT for strong
proprietary models (e.g., Gemini 2.5-Pro, Claude-Sonnet-4), typically less than
2 percentage points, and sometimes no gain. This pattern suggests that these
benchmarks may already be saturated.

2. Capacity and family effects dominate in the solver pipeline. Failure modes
shift with model capacity: for small models the limiting factor is syntactic
acceptance due to invalid NL-to-FOL outputs; for mid-scale models, once the
execution success rate is high, residual errors mainly reflect semantic mismatches
in the formalization. Mid-sized open source models (e.g., Qwen3-14/32B,

Prepared using sagej.cls

4 Journal Title XX(X)

Gemma3-27B) reach near-parity with GPT-5 once they reliably emit valid FOL,
whereas smaller DeepSeek-R1 variants frequently fail to produce acceptable
formalizations.

3. Solver augmentation is more robust under controlled difficulty. On synthetic
datasets, solver-augmented models degrade more slowly with increasing reasoning
depth (retention 76.7% vs. 62.2% for CoT) and are more resilient to entity
substitutions and rule/fact distractors. Accuracy drops with growing structural
complexity (numbers of facts, rules, negations) are consistently smaller for the
solver pipeline (Figs. 3, 4). Symbolic execution is therefore most valuable in harder
cases—high-depth chains, noisy contexts—and in safety- or verifiability-critical
applications.

Related Work
Large language models exhibit stronger multi-step reasoning when encouraged to
externalize intermediate steps. Early work (Ling et al. 2017; Nye et al. 2021)
demonstrated that generating natural-language rationales can significantly improve
program induction and problem solving in mathematical domains. Chain-of-thought
prompting formalized this idea, showing that giving a few rationale exemplars elicits
stepwise deductions across arithmetic, commonsense, and symbolic tasks (Wei et al.
2022); zero-shot CoT further showed that a minimal instruction (“let’s think step by
step”) can unlock such behavior without exemplars (Kojima et al. 2022). Beyond
prompting, various post-training methods have been proposed to further strengthen CoT
reasoning. These include supervised and reinforcement learning approaches such as
ReFT (Luong et al. 2024), process supervision with intermediate feedback (Lightman
et al. 2023), and step-wise reinforcement learning frameworks like STaR (Zelikman
et al. 2022). Recent work also shows that some CoT behavior is already latent in
pretrained models and can be revealed by alternative decoding strategies rather than
explicit prompting (Wang et al. 2024). A complementary line of work treats symbolic
solvers as tools and the LLM as a semantic parser from natural language to formal
specifications (e.g., FOL constraints), delegating inference to a solver engine for
faithfulness and verifiability. Logic-LM (Pan et al. 2023) translates problems to logic
and uses solver feedback for iterative self-refinement, reporting sizable gains over CoT
on ProofWriter (Tafjord et al. 2021), PrOntoQA (Saparov and He 2022), and related sets.
LINC (Olausson et al. 2023) similarly parses premises/hypotheses to FOL and offloads
deduction to a theorem prover, adding majority-vote mechanisms to improve robustness
to parsing errors. SatLM (Ye et al. 2023) advocates declarative prompting wherein
the LLM specifies constraints while a SAT/SMT/theorem prover computes the answer,
mitigating typical planning/calculation errors found in free-form CoT. More recently,
CLOVER introduced a compositional NL→FOL translation with semantic verification,
improving faithfulness on complex sentences and longer reasoning chains (Ryu et al.
2024). However, these solver-augmented approaches rely on auxiliary mechanisms
such as refinement loops, majority voting, or search over candidate formalizations.
While these strategies boost performance, they also add inference-time computation

Prepared using sagej.cls

Wang and Seggoju 5

and obscure the solver’s intrinsic contribution. We instead adopt a controlled single-
pass protocol: CoT models must output a single label in one forward pass, and solver-
augmented models must produce a one-shot formalization executed once by a symbolic
engine, without retries or ensembling. To ensure comparability, we restrict tasks to pure
first-order logic deduction without fuzzy, modal, or temporal extensions, and we further
introduce synthetic variations in reasoning depth and structured distractions to clarify
when solver augmentation still provides advantages over modern CoT models.

Experimental Methodology

Study Design and Research Questions
In this study, we systematically compare two contrasting approaches to question
answering (QA) on FOL deduction problems: CoT-augmented LLMs and solver-
augmented LLMs. Our goal is to determine whether solver augmentation still provides
meaningful benefits over CoT prompting in the era of advanced LLMs, and to identify the
conditions under which each approach excels or falters. To achieve this goal, we organize
our study around three research questions that address current gaps in the literature:

• RQ1: How do CoT-augmented and solver-augmented LLMs perform on FOL-
based QA benchmarks when evaluated across state-of-the-art commercial models?

• RQ2: Can solver-augmented approaches maintain competitive performance on
benchmark datasets when using smaller open-source LLMs (1–32B parameters)?

• RQ3: How robust are CoT- and solver-augmented methods to controlled structural
variations in synthetic datasets, such as increased reasoning depth, the presence
of irrelevant or distracting conditions, and changes in the number of predicates or
rules?

These questions are motivated by recent trends in the field: CoT prompting has become
the dominant industry practice following extensive post-training on reasoning tasks,
raising questions about whether solver-based methods still provide added value; smaller
open-source LLMs are increasingly deployed in practice, making solver augmentation
potentially attractive for resource-constrained settings; and robustness under controlled
conditions remains underexplored in prior work, particularly as reasoning complexity
increases beyond benchmark difficulty levels.

Approaches Under Study
CoT-augmented LLMs CoT-augmented LLMs answer questions by directly generating
step-by-step solutions, under the assumption that human-like reasoning can emerge
from token-to-token generation. In practice, these LLMs are post-trained on
problems paired with detailed, step-by-step solutions via supervised fine-tuning (SFT)
and/or reinforcement-learning-based fine-tuning (e.g., RLHF), to better elicit such
rationales (Nye et al. 2021; Wei et al. 2022; Luong et al. 2024). At inference time,
we adopt a zero-shot CoT setting: the model receives only a minimal instruction (e.g.,
“let’s think step by step”) without any in-context examples, and is prompted to generate

Prepared using sagej.cls

6 Journal Title XX(X)

intermediate natural-language rationales—a chain of thought (CoT)—before producing
the final answer (see more detailed prompt templates in Appendix, page 22). This
setup minimizes prompt requirements and enables us to examine the model’s intrinsic
reasoning capabilities under minimal external guidance (Kojima et al. 2022).

Solver-augmented LLMs Solver-augmented LLMs (Pan et al. 2023; Olausson et al.
2023; Ye et al. 2023; Ryu et al. 2024) adopt a hybrid neuro-symbolic design in
which the LLM primarily functions as a semantic parser. Given a natural-language
question, the model is prompted to abstract the problem into a formal representation
consisting of predicates, facts, and rules expressed in first-order logic. To interface
with symbolic reasoners, we implement a rule-based translation layer that maps LLM-
generated FOL expressions to solver-specific syntax through pattern matching and
syntactic transformations. Specifically, this layer handles: (i) conversion of logical
connectives (∧, ∨, ¬, →) to solver-native operators, (ii) transformation of quantifiers
(∀, ∃) into appropriate solver constructs, and (iii) restructuring of implications into
Horn clauses for Prolog or assertions for Z3. When the LLM produces syntactically
invalid FOL (e.g., malformed predicates or unbalanced parentheses), the system defaults
to uniform random selection among answer options, maintaining our strict single-pass
evaluation protocol without refinement attempts (see more implementation detail in
Appendix, page 24). This design minimizes the LLM’s sensitivity to syntactic variations
of solver input languages and isolates its role to semantic abstraction, while delegating
logical inference to the symbolic solver. The prompt templates used to guide the semantic
parsing process for each dataset are provided in Appendix, page 19.

Datasets
Our study targets QA tasks formulated as FOL deduction, where conclusions follow
necessarily from explicitly stated premises. We select datasets with clear, unambiguous
natural-language statements and without modality or fuzzy logic, to isolate deductive
reasoning capabilities when comparing CoT- and solver-augmented methods.

Benchmark Datasets Following prior work (Pan et al. 2023; Olausson et al. 2023;
Ryu et al. 2024), we evaluate on three established benchmarks where solver-augmented
methods have previously shown notable improvements over CoT-based approaches:

• ProofWriter (Tafjord et al. 2021): We use the “Depth 5” subset (600 problems),
which involves multi-hop implications. Each problem provides a set of premises
(facts and rules in natural language) and asks whether a hypothesis is true, false,
or undetermined.

• PrOntoQA (Saparov and He 2022): We adopt the 5-hop fictional character subset
(500 problems), the most challenging split. Each query tests whether a candidate
fact follows from a background theory defined in FOL.

• LogicalDeduction (Srivastava et al. 2022): We use 300 logic grid puzzles from
the BIG-bench “Logical Deduction” task. Each puzzle specifies a set of clues and
requires a consistent assignment or ordering.

Prepared using sagej.cls

Wang and Seggoju 7

Synthetic Datasets To probe robustness under controlled structural variations (RQ3),
we construct synthetic datasets using the ProverQA pipeline (Qi et al. 2025) with
adaptations for pure FOL deduction. Our goal is to systematically vary problem
complexity while maintaining logical validity.

Generation pipeline. We follow ProverQA’s three-stage procedure: (i) Background
story generation creates a narrative context; (ii) Logic skeleton generation starts from a
target goal g and iteratively builds a proof tree, using a symbolic prover to ensure T ⊨ g;
(iii) Statement translation maps the formal representation back to natural language. We
constrain the logic to pure FOL with standard connectives (∧,∨,¬,→, ∀, ∃), restricting
rules to definite clauses for decidability. To improve sample quality, we further apply
multi-pass generation with majority-voting filters between LLM and solver outputs to
remove low-quality or inconsistent instances (detailed in Qi et al. 2025).

Controlled factors. We systematically vary three factors affecting reasoning difficulty:

• Reasoning depth: The minimum intermediate inference steps required to derive
the goal, ranging across five levels: Easy (1–2 steps), Medium (3–5), Hard (6–9),
Very Hard (10–13), and Extreme (14–17).

• Noise 1 (Entity-level distractions): Following prior work, we randomly duplicate
facts/rules with substituted entity names. The parameter ∈ {0.2, 0.4, 0.6, 0.8, 1.0}
indicates the proportion of original facts duplicated. These distractors share the
same predicates but use different entities, making them domain-relevant but task-
irrelevant.

• Noise 2 (Rule/fact-level distractions): We add logically valid facts and rules that
create alternative reasoning paths unrelated to the main query. These distractors
form coherent logical structures but lead to irrelevant conclusions. The parameter
controls inclusion probability (e.g., 0.6 = 60% chance of adding such distractors).
Models must distinguish between valid reasoning paths that answer the query and
those that do not.

Models
Commercial LLMs. We evaluate four state-of-the-art models: Gemini 2.5-Pro (Google

DeepMind 2025), Claude-Sonnet-4 (Anthropic 2025), GPT-5 (OpenAI 2025), and
DeepSeek-Reasoner (R1) (DeepSeek 2025).All models are accessed via their respective
APIs with temperature set to 0 to ensure deterministic outputs and reproducibility of
results across experimental runs.

Open-source LLMs. For RQ2, we evaluate models from 1B to 32B parameters via
ollama (Ollama 2025): Gemma-3 (2B, 9B, 27B), Qwen-3 (1B, 4B, 7B, 14B, 32B), and
DeepSeek-R1 variants (1.5B, 8B, 14B, 32B). This enables analysis of solver integration
across different model capacities.

Symbolic solvers. We employ actively maintained solvers suited to each dataset’s
logical structure: Z3 (de Moura and Bjørner 2008) for PrOntoQA and synthetic datasets
(general FOL reasoning), SWI-Prolog (Wielemaker et al. 2012) for ProofWriter (Horn

Prepared using sagej.cls

8 Journal Title XX(X)

clause inference), and the Python constraint library (Tauber and contributors 2025) for
LogicalDeduction (constraint satisfaction). A rule-based translation layer converts LLM-
generated FOL to solver-specific syntax.

Evaluation Protocol
We evaluate performance using multiple metrics to comprehensively assess both
approaches:

Primary metrics.

• Overall Accuracy: Fraction of correct answers across all queries. For solver-
augmented methods, failed executions default to uniform random selection among
answer options (33.3% expected accuracy for three-choice questions).

• Execution Success Rate (Exe_Rate): Fraction of queries with syntactically valid
formalizations accepted by the solver (solver-augmented only).

• Execution Accuracy (Exe_Acc): Proportion of correct answers among
successfully executed cases, serving as an upper bound on semantic correctness
(solver-augmented only).

Robustness metrics. To quantify model robustness under varying conditions, we
additionally compute:

• Retention Ratio: The ratio of accuracy at the most difficult level relative to the
easiest level for each experimental dimension (e.g., 14–17 vs. 1–2 reasoning steps,
or highest vs. lowest noise), measuring performance degradation.

• Standard Deviation: Variance in accuracy across different difficulty levels or
noise conditions, indicating stability.

• Performance Gap (∆): The difference between solver-augmented and CoT-
augmented accuracy (Solver − CoT), quantifying relative advantage.

Statistical analysis. For synthetic datasets with controlled factors, we compute
Spearman correlation coefficients (ρ) to assess monotonic relationships between
distraction levels and performance, with significance testing (p-values) to validate
observed trends.

Experimental setup. For fair comparison, we enforce standardized formats: both
approaches output from {A: True, B: False, C: Undetermined}. CoT models receive
zero-shot prompts with explicit format instructions. Solver-augmented models receive
prompts with logical syntax specifications and three illustrative examples to guide
formalization. All experiments use greedy decoding with single-pass evaluation to reflect
practical deployment scenarios. We report results averaged across all test instances for
each dataset, with additional stratified analysis by structural complexity factors where
applicable.

Prepared using sagej.cls

Wang and Seggoju 9

Results & Discussion

RQ1: CoT-Augmented vs Solver-Augmented Performance

Our results reveal that solver-augmented approaches no longer deliver the substantial
gains on these three benchmarks that were reported in earlier work (Pan et al. 2023;
Olausson et al. 2023; Ryu et al. 2024). For Gemini-2.5-Pro, Claude-Sonnet-4, and
DeepSeek-Reasoner, solver-augmented pipelines improve accuracy by less than 2% on
average (Table 1). These modest gains are primarily observed in ProofWriter, while
PrOntoQA and LogicalDeduction exhibit virtually no change. For GPT-5, CoT and
solver-augmented results are essentially indistinguishable in our single-pass setup; on
ProofWriter, the solver variant even underperforms by 0.1%. Analysis of error patterns
reveals distinct failure modes: solver-augmented errors primarily stem from duplicate
predicate definitions during formalization, while CoT errors arise from occasional
mistakes at individual reasoning steps (e.g., misinterpreting a premise or incorrectly
applying a rule) rather than a complete inability to perform logical reasoning (see more
detailed case studies in Appendix, page 28).

Table 1. Accuracy comparison of CoT- and Solver-augmented approaches across three
reasoning datasets. ∆ denotes the accuracy difference (Solver − CoT) in percentage points.
The last column (Avg. ∆) reports the average improvement across the three datasets for
each model. Positive values indicate that Solver outperforms CoT. Bold values indicate the
best performance for each dataset and method. See comparison with additional models in
Appendix Table 2.

ProofWriter PrOntoQA LogicalDeduction Avg. ∆

Model CoT(%) Solver(%) ∆ (%) CoT(%) Solver(%) ∆ (%) CoT(%) Solver(%) ∆ (%) (%)

Gemini-2.5-pro 96.36 98.33 +1.97 100.00 100.00 +0.00 98.30 99.33 +1.03 +1.00
Claude-Sonnet-4 95.16 98.67 +3.51 100.00 100.00 +0.00 99.00 99.33 +0.33 +1.28
Deepseek-reasoner 93.66 98.33 +4.67 100.00 100.00 +0.00 99.00 99.67 +0.67 +1.78
GPT-5 98.80 98.70 -0.10 100.00 100.00 +0.00 100.00 100.00 +0.00 -0.03

This stands in sharp contrast to prior studies, where solver augmentation produced
substantial improvements: Logic-LM (Pan et al. 2023) using GPT-4 reported gains of
+11.55% and +12.38% on ProofWriter and LogicalDeduction, while COLVER (Ryu
et al. 2024) using GPT-4o observed improvements of +18.7% and +5.3%. Our results
indicate that recent post-training practices, such as chain-of-thought fine-tuning, have
substantially enhanced models’ deductive reasoning capabilities, effectively narrowing
the gap between pure CoT and solver-augmented methods on public benchmarks.

These findings raise two important questions that we address in subsequent
experiments. First, if solver-augmented pipelines primarily require the LLM to perform
semantic parsing, then smaller open-source models might suffice—potentially replacing
very large proprietary models without significant accuracy loss (explored in RQ2).
Second, the near-perfect performance of strong LLMs on current benchmarks raises
concerns about possible overfitting: these datasets may be too simple or too familiar
to the models, potentially masking true differences in reasoning robustness. To address

Prepared using sagej.cls

10 Journal Title XX(X)

this concern, we design controlled synthetic datasets with systematic structural variations
(RQ3).

RQ2: Impact of Model Scale and Family

1.0 2.0 4.0 8.0 16.0 32.0
0

20

40

60

80

100

Sc
or

e
(%

)

ProofWriter - Exe_Rate

1.0 2.0 4.0 8.0 16.0 32.0

ProofWriter - Exe_Acc

1.0 2.0 4.0 8.0 16.0 32.0
0

20

40

60

80

100

Sc
or

e
(%

)

ProntoQA - Exe_Rate

1.0 2.0 4.0 8.0 16.0 32.0

ProntoQA - Exe_Acc

1.0 2.0 4.0 8.0 16.0 32.0
Model Size (B parameters, log₂ scale)

0

20

40

60

80

100

Sc
or

e
(%

)

LogicalDeduction - Exe_Rate

1.0 2.0 4.0 8.0 16.0 32.0
Model Size (B parameters, log₂ scale)

LogicalDeduction - Exe_Acc

Model Family
deepseek-r1 gemma3 qwen3 gpt-5 gpt-5-nano

Figure 2. Solver-augmented performance vs. model scale on ProofWriter, PrOntoQA and
LogicalDeduction. Left: Execution success rate (syntactic acceptance by the solver). Right:
Execution accuracy (correct final answer after solver execution). Higher values indicate better
performance. Model families: Gemma3 (green ♦), Qwen3 (blue •), DeepSeek-R1 (red ×);
GPT-5 and GPT-5-nano shown as horizontal reference baselines (gray dashed lines). See
additional experiments with the CoT-augmented settings in Appendix Fig. 5.

We next investigate how model scale and family affect performance in the solver-
augmented setting, focusing on open-source LLMs ranging from 1B to 32B parameters.
Figure 2 summarizes results on ProofWriter, PrOntoQA, and LogicalDeduction,

Prepared using sagej.cls

Wang and Seggoju 11

reporting both execution success rate (syntactic acceptance by the solver) and execution
accuracy (correct final answer after solver execution). GPT-5 and GPT-5-nano serve as
horizontal reference baselines.

Scaling trends. We evaluate released open-source models without additional fine-
tuning to isolate their intrinsic ability to follow formalization prompts under solver
augmentation. Across all three datasets, we observe consistent scaling behavior:
larger models achieve higher execution rates and accuracy, with performance steadily
approaching the GPT-5 baseline. Small models (1–4B) frequently fail to generate
syntactically valid formalizations, resulting in very low execution rates that cap their
execution accuracy. In contrast, mid- to large-scale models (14–32B) achieve near-ceiling
accuracy (exceeding 95%), demonstrating that solver augmentation enables them to
match state-of-the-art proprietary models.

Model family differences. Among the evaluated families, Qwen3 (blue circles)
demonstrates the strongest performance: even at 4B parameters it surpasses 90%
execution accuracy on ProofWriter and PrOntoQA, and at 32B it essentially matches
GPT-5. Gemma3 (green diamonds) shows more gradual improvement, requiring 12–
27B parameters to achieve competitive performance, though it ultimately reaches similar
accuracy levels. DeepSeek-R1 (red crosses) exhibits the weakest scaling trajectory: while
the 14B and 32B versions eventually achieve approximately 90% execution accuracy,
smaller variants (1.5B and 8B) completely fail with execution rates approaching zero,
rendering them unsuitable for this pipeline.

Baseline comparison and failure analysis. Our results demonstrate that mid-sized
open-source models (Qwen3-14B/32B, Gemma3-27B) achieve near-parity with GPT-
5 on deductive reasoning benchmarks in the solver-augmented setting, indicating
that very large proprietary models are not strictly necessary for strong performance.
However, we observe a complete breakdown in smaller DeepSeek-R1 models: despite
explicit instructions to output FOL formalizations, they persistently attempt to solve
problems directly in natural language, producing invalid solver inputs. We hypothesize
that this behavior stems from DeepSeek-R1’s training methodology. According to
the technical report (Guo and et al. 2025), the initial DeepSeek-R1-Zero was
optimized primarily through reinforcement learning without strong instruction-following
supervision, resulting in poor readability and structural non-compliance. Although
later stages incorporated cold-start supervised fine-tuning and format rewards, these
signals appear insufficient for small-scale variants, leaving their instruction-following
capabilities fragile.

These findings support the conclusion that mid-sized open source models can
effectively substitute for very large ones in solver-augmented settings, while also
highlighting that reliable solver integration depends critically on robust instruction-
following alignment. Moreover, fine-tuning such models specifically on natural language
to FOL mapping tasks could further enhance their semantic parsing capabilities.

RQ3: Performance on Synthetic Datasets
Experiments with Controlled Factors

Prepared using sagej.cls

12 Journal Title XX(X)

Impact of reasoning depth. Figure 3 (left) reports accuracy as a function of reasoning
steps, ranging from 1–2 to 14–17. Both CoT and solver-augmented models exhibit
clear monotonic decline as depth increases, though the solver pipeline degrades more
gradually. In the shallow regime (1–5 steps), the two approaches perform nearly
identically, maintaining accuracy above 90%. Notably, benchmark datasets such as
ProofWriter and PrOntoQA are limited to 5-hop reasoning, confirming that within this
range CoT-augmented methods can match solver-augmented performance. Beyond 5
steps, however, the gap widens substantially: at 6–9 steps the solver maintains a +5%
advantage, increasing to +8% at 10–13 steps and +14% at 14–17 steps. Analysis of model
outputs reveals distinct error patterns. CoT-augmented models frequently hallucinate
in longer reasoning chains: they introduce irrelevant or non-existent premises and
derive incorrect conclusions from them. Their reasoning often lacks internal consistency,
producing self-contradictory steps while superficially “confirming” their correctness.
They also tend to apply closed-world assumptions instead of the required open-
world setting and sometimes inject unstated common-sense constraints—for example,
assuming that “a car cannot be both white and green” without such a premise. Even
when the reasoning itself is correct, models occasionally pick the wrong answer option.
Solver-augmented models also show accuracy degradation with depth, but for different
reasons. As reasoning steps increase, the semantic parser faces growing difficulty in
producing correct formalizations—for instance, in defining and consistently reusing
predicates or in correctly instantiating rules with appropriate arguments. These parsing
errors accumulate with increasing reasoning depth and reduce execution accuracy, even
though the downstream solver itself remains logically sound. To quantify robustness,
we compute a retention ratio: the accuracy at the deepest level (14–17 steps) relative
to the shallowest level (1–2 steps). The solver retains 76.7% of its initial performance,
compared to only 62.2% for CoT. Additionally, the solver demonstrates lower variance
across depth bins (σ = 8.7 vs. 13.6), indicating more stable degradation. These results
suggest that while CoT post-training enables strong shallow reasoning up to 5 hops,
solver augmentation provides superior stability as reasoning depth increases.

Impact of entity-level distractions (Noise 1). To further probe robustness, we apply
name substitution as entity-level noise on the reasoning depth 6–9 subset, generating
five variants with substitution rates from 0.2 to 1.0. As shown in Figure 3 (middle),
both pipelines remain relatively stable across noise levels. CoT accuracy fluctuates
between 80.3–84.0% (µ = 82.1%, σ = 1.3%), while the solver achieves consistently
higher performance (85.7–87.0%, µ = 86.5%, σ = 0.5%), maintaining an average
margin of +4.3%. Importantly, no monotonic degradation occurs as noise increases:
Spearman correlations are weak and statistically insignificant (CoT: ρ = −0.30, p =
0.62; Solver: ρ = −0.21, p = 0.74), with retention ratios at noise level 1.0 relative to 0.2
remaining nearly identical for both methods (≈0.99). The minimal impact of entity-level
distractions indicates that both CoT and solver-augmented methods can effectively filter
out irrelevant name variations, focusing on the logical relationships rather than being
confused by the presence of similar facts about different entities.

Prepared using sagej.cls

Wang and Seggoju 13

(1–2) (3–5) (6–9) (10–13) (14–17)
Reasoning Steps

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

CoT (std=13.58)
Solver (std=8.67)

0.20 0.40 0.60 0.80 1.00
Noise 1 Level

CoT (std=1.28)
Solver (std=0.45)

0.20 0.40 0.60 0.80 1.00
Noise 2 Level

CoT (std=1.95)
Solver (std=1.01)

Figure 3. Comparison of CoT and Solver accuracies across different conditions. The left
panel shows performance with varying reasoning step difficulty, while the middle and right
panels present results under increasing noise levels (Noise 1 and Noise 2). Dashed lines
indicate mean values. The corresponding numerical results are provided in Appendix
Tables 3, 4, and 5.

Impact of rule/fact-level distractions (Noise 2). We next examine robustness under
distracting rules and facts, again using the reasoning depth 6–9 subset. Figure 3 (right)
reveals that performance decreases as the probability of injecting distractors increases.
CoT accuracy drops from 83.0% at noise level 0.2 to 77.0% at 1.0 (µ = 80.5%,
σ = 1.95%, retention = 0.93), indicating that distracting rules and facts systematically
interfere with natural-language reasoning chains. Solver-augmented models decline more
gently, from 86.7% to 83.7% (µ = 85.3%, σ = 1.01%, retention = 0.97), with strictly
monotonic decrease (Spearman ρ = −1.00, p = 0.0167). The smaller degradation
suggests that while additional distractors complicate semantic parsing into FOL,
once a consistent formalization is achieved, the solver can effectively filter irrelevant
information and preserve correctness. Across all noise levels, the solver consistently
outperforms CoT by 3.7–6.7%, demonstrating superior robustness to rule/fact-level
distractions.

Effect of Structural Complexity To analyze the impact of structural complexity beyond
controlled synthetic settings, we aggregate all instances from the synthetic datasets
and stratify them by the number of facts, rules, and negations. For each measure, we
partition the combined dataset into five quantiles, yielding balanced subsets that enable
examination of how increasing structural complexity correlates with model accuracy (see
Appendix Tables 6, 7, and 8 for details).

Figure 4 summarizes the effects of varying structural elements. For facts, accuracy
decreases steadily as premises increase: CoT drops from 88.8% to 68.7% (σ =
6.6%), while the solver declines more gradually from 90.7% to 78.1% (σ = 4.1%).
The performance gap widens with scale, indicating that CoT struggles to maintain
coherent chains in longer contexts, whereas the solver—despite increased formalization
burden—benefits from symbolic inference. For negations, CoT shows moderate but non-
monotonic decline from 84.9% to 75.6% (approximately 1.4% per quantile step). The
solver remains comparatively stable, decreasing from 87.0% to 82.7% (approximately

Prepared using sagej.cls

14 Journal Title XX(X)

[3–24]
[24–31]

[31–36]
[36–45]

[45–107]

Number of Facts

60

65

70

75

80

85

90

95

Ac
cu

ra
cy

 (%
)

CoT (std=6.62)
Solver (std=4.09)

[0–2]
[2–3]

[3–4]
[4–5]

[5–16]

Number of Negations

CoT (std=3.06)
Solver (std=1.76)

[0–6]
[6–7]

[7–9]
[9–12]

[12–31]

Number of Rules

CoT (std=7.91)
Solver (std=5.04)

Figure 4. Accuracy comparison between CoT and Solver across different ranges of (left)
number of predicates, (middle) number of negations, and (right) number of rules. Dashed
lines indicate mean values across all quantiles.

0.2% per step). The performance gap between solver and CoT widens as negations
increase (from +2.1% to +7.4%), with higher retention for the solver (0.95 vs. 0.89). The
strongest effect emerges with rules: CoT accuracy falls sharply from 89.0% to 65.1%
(σ = 7.9%), while the solver drops from 90.9% to 75.7% (σ = 5.0%). This indicates
that increasing numbers of rules are particularly disruptive for CoT’s language-based
reasoning, whereas solver-augmented pipelines maintain higher accuracy and lower
variance. We note that this analysis is observational, as these structural factors are not
fully independent, and thus reflects correlations rather than causal effects.

Limitations

Our study has two primary limitations. First, we restrict evaluation to pure first-
order logic, excluding modal, temporal, and probabilistic reasoning common in real-
world applications. The near-parity between CoT and solver-augmented methods we
observe on FOL benchmarks may not hold for these richer logical frameworks.
Second, our datasets—both benchmarks and synthetic—use clear, unambiguous problem
statements with simple sentence structures. Real-world deductive reasoning involves
complex natural language with nested clauses, ambiguous references, and context-
dependent interpretations that pose different challenges for each approach. While our
synthetic datasets test robustness to entity substitutions and distracting facts, they
maintain straightforward linguistic presentation. Natural language complexities such
as pronominal resolution, scope ambiguity, and syntactic garden paths could create
asymmetric difficulties for the two approaches, though which method would be more
affected remains an open question without empirical evaluation.

Prepared using sagej.cls

Wang and Seggoju 15

Conclusion & Future Work

Conclusion

This work presents a systematic comparison of CoT-augmented versus solver-augmented
LLMs for first-order logic deduction under strict single-pass evaluation. Our findings
reveal that the performance gap between these approaches has dramatically narrowed
on standard benchmarks, with state-of-the-art models achieving near-ceiling accuracy
(less than 2% improvement from solver augmentation). This convergence suggests that
recent advances in reasoning-oriented post-training have substantially enhanced LLMs’
deductive capabilities for shallow reasoning tasks. However, this apparent parity masks
important differences under challenging conditions. While both approaches perform
comparably on problems requiring up to 5 reasoning steps, solver-augmented methods
demonstrate superior robustness at extreme depths, retaining 76.7% accuracy at 14–
17 steps compared to 62.2% for CoT. This differential degradation reveals that pure
neural approaches suffer from compounding errors and hallucinated premises in long
reasoning chains, whereas solver augmentation maintains relative stability by delegating
inference to sound symbolic engines. Our scaling analysis reveals that, mid-sized open-
source models (14–32B parameters) achieve near-parity with GPT-5 in solver augmented
settings, as their task reduces to semantic parsing rather than end-to-end reasoning. This
accessibility enables resource-constrained deployments without sacrificing accuracy on
complex deductive tasks. These results indicate that while CoT post-training has achieved
remarkable progress, solver augmentation remains valuable for (i) complex multi-hop
inference beyond 5 steps, (ii) resource-efficient deployments with smaller models, and
(iii) safety-critical applications requiring robust and verifiable reasoning.

Future Work

Several directions emerge from this study. First, extending beyond first-order logic
to modal, temporal, and probabilistic reasoning would reveal whether symbolic
augmentation benefits generalize across reasoning types. Second, our finding that mid-
sized models effectively serve as semantic parsers suggests opportunities for specialized
fine-tuning on NL-to-FOL translation, potentially yielding efficient “reasoning modules”
that combine smaller model accessibility with formal method reliability. Third, the
complementary failure modes—hallucination for CoT versus parsing errors for solvers—
motivate hybrid architectures that could leverage both strengths. Potential designs include
using CoT to guide formal translation or adaptive systems that dynamically select
approaches based on problem characteristics. Finally, our results highlight the need
for more challenging benchmarks with deeper reasoning chains, complex quantifier
structures (nested and alternating quantifiers), and realistic noise. As LLMs continue to
improve, solver-based methods may shift from necessary augmentation to specialized
tools for particular problem classes, but their contribution to robust, trustworthy AI
systems remains essential.

Prepared using sagej.cls

16 Journal Title XX(X)

References

Anthropic (2025) Introducing claude 4 (opus 4 and sonnet 4). https://www.anthropic.

com/news/claude-4. Announcement of Claude Sonnet 4 and Opus 4.
Beiser A, Penz D and Musliu N (2025) Intermediate languages matter: Formal languages and llms

affect neurosymbolic reasoning. arXiv preprint arXiv:2509.04083 .
Chen M, Tworek J, Jun H, Yuan Q, Ponde H and et al (2021) Evaluating large language models

trained on code. In: NeurIPS.
Chung HW, Hou L, Longpre S, Zoph B, Tay Y, Fedus W, Li E, Wang X, Dehghani M, Brahma

S, Webson A et al. (2022) Scaling instruction-finetuned language models. arXiv preprint
arXiv:2210.11416 .

Creswell A, Shanahan M and Higgins I (2022) Selection-inference: Exploiting large language
models for interpretable logical reasoning. arXiv preprint arXiv:2205.09712 .

de Moura L and Bjørner N (2008) Z3: An efficient smt solver. In: Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), Lecture Notes in Computer Science,
volume 4963. Springer, pp. 337–340. DOI:10.1007/978-3-540-78800-3_24. URL https:

//doi.org/10.1007/978-3-540-78800-3_24.
DeepSeek (2025) Deepseek-r1 release. https://api-docs.deepseek.com/news/

news250120. Initial release post; open-source technical report and models.
Google DeepMind (2025) Gemini 2.5 pro: Our most intelligent ai

model. https://blog.google/technology/google-deepmind/

gemini-model-thinking-updates-march-2025/. Announces availability
of Gemini 2.5 Pro in AI Studio/Gemini app.

Guo D and et al (2025) Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948 URL https://arxiv.org/abs/2501.

12948.
Kojima T, Gu SS, Reid M, Matsuo Y and Iwasawa Y (2022) Large language models are zero-shot

reasoners. Advances in neural information processing systems 35: 22199–22213.
Lam LHM, Thatikonda RK and Shareghi E (2024) A closer look at tool-based logical reasoning

with llms: The choice of tool matters. In: Proceedings of the 22nd Annual Workshop of the
Australasian Language Technology Association. pp. 41–63.

Lightman S, Heimersheim S, Wu T, Askell A, Henighan T, Chen A, Glaese A, Irving G, McAleese
NJ, Kravec S et al. (2023) Let’s verify step by step. arXiv preprint arXiv:2305.20050 URL
https://arxiv.org/abs/2305.20050.

Ling W, Yogatama D, Dyer C and Blunsom P (2017) Program induction by rationale generation:
Learning to solve and explain algebraic word problems. In: Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics (ACL), Long Papers.
Vancouver, Canada: Association for Computational Linguistics, pp. 158–167. DOI:10.18653/
v1/P17-1015. URL https://aclanthology.org/P17-1015/.

Liu H, Ding Y, Fu Z, Zhang C, Liu X and Zhang Y (2025) Evaluating the logical reasoning abilities
of large reasoning models. arXiv preprint arXiv:2505.11854 .

Luong TQ, Zhang X, Jie Z, Sun PK, Jin X and Li H (2024) Reft: Reasoning with reinforced fine-
tuning. In: Proceedings of the 62nd Annual Meeting of the Association for Computational

Prepared using sagej.cls

https://www.anthropic.com/news/claude-4
https://www.anthropic.com/news/claude-4
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://api-docs.deepseek.com/news/news250120
https://api-docs.deepseek.com/news/news250120
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2305.20050
https://aclanthology.org/P17-1015/

Wang and Seggoju 17

Linguistics (ACL). URL https://aclanthology.org/2024.acl-long.410/.
Nye M, Andreassen AJ, Gur-Ari G, Michalewski H, Austin J, Bieber D, Dohan D, Lewkowycz

A, Bosma M, Luan D, Sutton C and Odena A (2021) Show your work: Scratchpads for
intermediate computation with language models. arXiv preprint arXiv:2112.00114 URL
https://arxiv.org/abs/2112.00114.

Olausson TX, Gu A, Lipkin B, Zhang CE, Solar-Lezama A, Tenenbaum JB and Levy R (2023)
Linc: A neurosymbolic approach for logical reasoning by combining language models with
first-order logic provers. In: Proceedings of the 2023 Conference on Empirical Methods in
Natural Language Processing (EMNLP). URL https://aclanthology.org/2023.

emnlp-main.313/.
Ollama (2025) Ollama: Run large language models locally. https://ollama.com/. Official

website and docs hub.
OpenAI (2025) Introducing GPT-5. https://openai.com/index/

introducing-gpt-5/. Unified system with deeper reasoning mode (GPT-5 thinking).
Pan L, Albalak A, Wang X and Wang WY (2023) Logic-lm: Empowering large language models

with symbolic solvers for faithful logical reasoning. arXiv preprint arXiv:2305.12295 .
Qi C, Ma R, Li B, Du H, Hui B, Wu J, Laili Y and He C (2025) Large language models meet

symbolic provers for logical reasoning evaluation. arXiv preprint arXiv:2502.06563 .
Ryu H et al. (2024) Divide and translate: Compositional first-order logic translation and verification

for complex logical reasoning (clover). arXiv preprint arXiv:2410.08047 URL https:

//arxiv.org/abs/2410.08047. ICLR 2025 (authors’ repository).
Saparov A and He H (2022) Language models are greedy reasoners: A systematic formal analysis

of chain-of-thought. arXiv preprint arXiv:2210.01240 .
Schick T, Dwivedi-Yu J, Dessì R, Raileanu R, Lomeli M, Bach SH, Goyal N, Huang XL, Mazaré

PE, Suhr A et al. (2023) Toolformer: Language models can teach themselves to use tools.
arXiv preprint arXiv:2302.04761 .

Srivastava A, Rastogi A, Rao A and et al (2022) Beyond the imitation game benchmark (big-
bench). arXiv preprint arXiv:2206.04615 .

Tafjord Ø, Mishra BD and Clark P (2021) Proofwriter: Generating implications, proofs, and
abductive statements over natural language. In: Findings of the Association for Computational
Linguistics (ACL).

Tauber J and contributors (2025) python-constraint: Constraint solving problem module for python.
https://python-constraint.github.io/python-constraint/. Accessed:
2025-09-26.

Wang X et al. (2024) Chain-of-thought reasoning without prompting. arXiv preprint
arXiv:2402.10200 URL https://arxiv.org/abs/2402.10200. NeurIPS 2024
poster.

Wei J, Wang X, Schuurmans D, Bosma M, Ichter B, Xia F, Chi EH, Le QV and
Zhou D (2022) Chain-of-thought prompting elicits reasoning in large language
models. In: Advances in Neural Information Processing Systems (NeurIPS). URL
https://proceedings.neurips.cc/paper_files/paper/2022/hash/

9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html.

Prepared using sagej.cls

https://aclanthology.org/2024.acl-long.410/
https://arxiv.org/abs/2112.00114
https://aclanthology.org/2023.emnlp-main.313/
https://aclanthology.org/2023.emnlp-main.313/
https://ollama.com/
https://openai.com/index/introducing-gpt-5/
https://openai.com/index/introducing-gpt-5/
https://arxiv.org/abs/2410.08047
https://arxiv.org/abs/2410.08047
https://python-constraint.github.io/python-constraint/
https://arxiv.org/abs/2402.10200
https://proceedings.neurips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html

18 Journal Title XX(X)

Wielemaker J, Schrijvers T, Triska M and Lager T (2012) Swi-prolog: description and
overview. Theory and Practice of Logic Programming 12(1–2): 67–96. DOI:10.1017/
S1471068411000494. URL https://doi.org/10.1017/S1471068411000494.

Ye X, Chen Q, Dillig I and Durrett G (2023) Satlm: Satisfiability-aided language models using
declarative prompting. In: Advances in Neural Information Processing Systems (NeurIPS).
URL https://arxiv.org/abs/2305.09656.

Zelikman E, Wu Y, Mu J and Goodman ND (2022) Star: Bootstrapping reasoning with reasoning.
arXiv preprint arXiv:2203.14465 URL https://arxiv.org/abs/2203.14465.

Prepared using sagej.cls

https://doi.org/10.1017/S1471068411000494
https://arxiv.org/abs/2305.09656
https://arxiv.org/abs/2203.14465

Wang and Seggoju 19

Appendix

A.1: Prompt Templates for Solver-Augmented Approach
PrOntoQA PrOntoQA uses standard first-order logic notation with universal quantifiers
for fictional ontologies:

Task:
You are a logic translator. Your task is to convert the given Problem and Question into
First-Order Logic (FOL).

Important Instructions:
- Follow the formatting exactly: use triple colons (:::)
- The Formulas must only use Predicates defined in the Predicates section
- Do not include reasoning or extra text

Example:
Problem: Each jompus is fruity. Every jompus is a wumpus. Every wumpus is not
transparent. [...] Alex is a tumpus.
Question: True or false: Alex is not shy.

Output Format:
Predicates:
jompus(x) ::: x is a jompus
fruity(x) ::: x is fruity
wumpus(x) ::: x is a wumpus
[...additional predicates...]

Formulas:
∀x (jompus(x) → fruity(x)) ::: Each jompus is fruity.
∀x (jompus(x) → wumpus(x)) ::: Every jompus is a wumpus.
∀x (wumpus(x) →¬transparent(x)) ::: Every wumpus is not transparent.
tumpus(alex) ::: Alex is a tumpus.
[...additional formulas...]

Query:
¬shy(alex) ::: Alex is not shy

Prepared using sagej.cls

20 Journal Title XX(X)

ProverQA (Synthetic Dataset) ProverQA requires careful handling of universal versus
specific rules:

Task:
You are a logic translator. First define all Predicates clearly, then convert Problem and
Question into First-Order Logic.

Universal vs Specific Rules:
- "If a/an [Subject_category]...", "All [Subject_category] who..."
→ Universal rules with ∀x (do NOT create predicate for Subject_category)
- "If [Name]...", "When [Name]..."
→ Specific rules using the name in every atom, no quantifier

Example with Subject_category: writer
Problem: If a writer expresses well, then they share ideas. Chloe does not communicate
clearly. [...]
Question: Based on the above information, is the following statement true, false, or
uncertain? Lee inspires readers.

Output:
Predicates:
expresses_well(x) ::: x expresses well
shares_ideas(x) ::: x shares ideas
[...additional predicates...]

Formulas:
∀x (expresses_well(x) → shares_ideas(x)) ::: If a writer expresses well, then they share
ideas.
¬communicates_clearly(Chloe) ::: Chloe does not communicate clearly.
writes_cleverly(Lee) ∨ master_brevity(Lee) ::: Lee writes cleverly or masters brevity.
[...additional formulas...]

Query:
inspire_readers(Lee) ::: Lee inspires readers

Prepared using sagej.cls

Wang and Seggoju 21

ProofWriter For ProofWriter, we employ a Prolog-style representation with custom
notation for negation to maintain compatibility with our solver pipeline:

Task Description:
You are given a problem description and a question. The task is to:
1) define all the predicates in the problem
2) parse the problem into logic rules based on the defined predicates
3) write all the facts mentioned in the problem
4) parse the question into the logic form

Important Instructions:
- Follow the formatting exactly as in the examples
- Predicate names & constants are lowercase; variables start with "$"
- To express negation, use the predicate with second argument set to False
(e.g., Kind(x, False) means "x is not kind")
- Do NOT use prefix-style negation such as ‘not‘, ‘~‘, or ‘\+‘

Example:
Problem: Anne is quiet. Erin is furry. [...] All red people are young.
Question: Based on the above information, is the following statement true, false, or
unknown? Anne is white.

Output Format:
Predicates:
quiet($x, bool) ::: is $x quiet?
furry($x, bool) ::: is $x furry?
[...additional predicates...]

Facts:
quiet(anne, True) ::: anne is quiet.
furry(erin, True) ::: erin is furry.
[...additional facts...]

Rules:
young($x, True) »> furry($x, True) ::: young people are furry.
red($x, True) »> young($x, True) ::: all red people are young.
[...additional rules...]

Query:
white(anne, True) ::: anne is white.

Prepared using sagej.cls

22 Journal Title XX(X)

LogicalDeduction For constraint satisfaction problems in LogicalDeduction, we define
domains, variables, and constraints:

Task Description:
Parse the problem as a constraint satisfaction problem, defining the domain, variables, and
constraints.

Format Specification:
Domain:
1: leftmost/oldest
N: rightmost/newest

Variables:
entity_name [IN] [1, 2, ..., N]

Constraints:
entity == value ::: Natural language justification
entity1 < entity2 ::: Natural language justification
AllDifferentConstraint([...]) ::: All entities have different values

Example:
Problem: In an antique car show, there are three vehicles: a station wagon, a convertible,
and a minivan. The station wagon is the oldest. The minivan is newer than the convertible.

Output:
Domain:
1: oldest
3: newest

Variables:
station_wagon [IN] [1, 2, 3]
convertible [IN] [1, 2, 3]
minivan [IN] [1, 2, 3]

Constraints:
station_wagon == 1 ::: The station wagon is the oldest.
minivan > convertible ::: The minivan is newer than the convertible.
AllDifferentConstraint([station_wagon, convertible, minivan]) ::: All
vehicles have different values.

A.2: Prompt Template for CoT-Augmented Model

We make use of a uniform template across datasets that uses the same zero-shot approach.

Prepared using sagej.cls

Wang and Seggoju 23

Solve this problem step by step. Think through your reasoning carefully, then provide your
final answer as a single letter ([[OPTIONS_LIST]]).
Only explicit premises can be used. Undefined terms cannot be evaluated. Similar concepts
̸= identical concepts.

Problem:
[[CONTEXT]]

Question:
[[QUESTION]]

Options:
[[OPTIONS]]

Please provide your step-by-step reasoning, then state your final answer as: "Answer: X"
where X is the letter of your chosen option.

Additionally, we also provide a system prompt which defines the role of the LLM

You are a logical reasoning expert. Analyze the problem step by step and provide your
reasoning in ’thoughts’, then select the correct answer.

As an example, a sample user prompt for the LogicalDeduction dataset would look as
follows:

Instructions:
Solve this logical deduction problem step by step. Think through your reasoning carefully,
then provide your final answer as a single letter (A, B, C, D, E, F, or G). Only explicit
premises can be used. Undefined terms cannot be evaluated. Similar concepts ̸= identical
concepts.
Problem:
The following paragraphs each describe a set of five objects arranged in a fixed order. The
statements are logically consistent within each paragraph.

In an antique car show, there are five vehicles: a minivan, a limousine, a sedan, a tractor,
and a hatchback. The tractor is the second-newest. The limousine is newer than the
hatchback. The limousine is older than the sedan. The minivan is newer than the sedan.

Question:
Which of the following is true?
Options:
A) The minivan is the second-oldest.
B) The limousine is the second-oldest.
C) The sedan is the second-oldest.
D) The tractor is the second-oldest.
E) The hatchback is the second-oldest.

Please provide your step-by-step reasoning, then state your final answer as: “Answer: X”
where X is the letter of your chosen option.

Prepared using sagej.cls

24 Journal Title XX(X)

B: Implementation of Translation Layer
Our solver-augmented pipeline implements a rule-based translation layer that converts
LLM-generated first-order logic expressions into solver-specific syntax. This layer
handles three solvers: Z3 for general FOL reasoning, SWI-Prolog for Horn clause
inference, and Python’s constraint library for CSP problems.

Z3 Translation The Z3 translator parses the LLM output into four sections:
Predicates, Formulas, Query. It performs the following transformations:

• Predicate declarations: Extracts predicate names and arities, declaring them as
Z3 functions with domain sort U and range BoolSort()

• Constant extraction: Identifies entity constants from formulas and declares them
as elements of sort U

• Logical connective mapping: Recursively transforms FOL syntax (∧,∨,¬,→
, ∀,∃) to Z3 Python API calls (And, Or, Not, Implies, ForAll, Exists)

• Query evaluation: Checks satisfiability of both the query and its negation to
determine TRUE/FALSE/UNKNOWN

SWI-Prolog Translation The Prolog translator converts FOL rules into Horn clauses:

• Fact translation: Maps positive ground atoms to Prolog facts (e.g.,
Furry(Anne, True)→ furry(anne).)

• Rule translation: Converts implication rules with »> separator into Prolog clauses
with :- operator

• Negation handling: Supports multiple negation syntaxes (not, ~, \+) and
boolean flags, translating them to Prolog’s negation-as-failure

• Variable mapping: Replaces variable symbols ($x, $y) with Prolog variables (X,
Y)

• Tabling: Automatically declares all predicates as tabled to prevent infinite
recursion

CSP Translation The constraint satisfaction translator handles logic grid puzzles:

• Domain parsing: Extracts variable domains from [IN] declarations (e.g.,
green_book [IN] [1,2,3,4,5])

• Constraint conversion: Transforms numeric comparisons and
AllDifferentConstraint declarations into Python constraint library
format

• Query matching: Evaluates candidate options against solver solutions using
variable-value assignments

Error Handling When the LLM produces syntactically invalid FOL (malformed
predicates, unbalanced parentheses, missing sections), the translation layer fails
gracefully. Following our strict single-pass protocol, failed translations default to uniform
random selection among answer options without refinement attempts.

Prepared using sagej.cls

Wang and Seggoju 25

C: Additional Model Performance Results (RQ1)

The following table presents extended results for additional small/mid-sized models
comparing CoT- versus solver-augmented approaches across three benchmark datasets.

Table 2. CoT vs. Solver by dataset. ∆ = Solver − CoT (percentage points). Higher is better.
LogicalDeduction ProofWriter PrOntoQA

Model Reason.(%) Solver(%) ∆ (%) Reason.(%) Solver(%) ∆ (%) Reason.(%) Solver(%) ∆ (%)

Qwen3-32B 86.3 96.0 +9.70 90.2 95.0 +4.80 95.6 97.6 +2.00
Gemma3-27B 89.0 80.7 -8.30 80.5 88.8 +8.30 98.8 89.6 -9.20
GPT-5-nano 98.0 74.0 -24.00 98.8 45.0 -53.80 99.6 59.0 -40.60

D: Additional Experimental Results (RQ2)

Figure 5 presents detailed performance trends across different model families and
parameter scales in CoT-augmented settings. For smaller models, we frequently observe
that the reasoning process is abandoned prematurely: the model either fails to provide
an answer or produces nonsensical output. By contrast, larger models tend to maintain
more stable performance. Notably, for some models in the Qwen family, especially on
more complex problems that require longer reasoning chains, the model often skips the
reasoning process entirely and directly outputs a final answer.

1.0 2.0 4.0 8.0 16.0 32.0
Model Size (B parameters, log scale)

0

20

40

60

80

100

Sc
or

e
(%

)

ProofWriter

1.0 2.0 4.0 8.0 16.0 32.0
Model Size (B parameters, log scale)

0

20

40

60

80

100

Sc
or

e
(%

)

ProntoQA

1.0 2.0 4.0 8.0 16.0 32.0
Model Size (B parameters, log scale)

0

20

40

60

80

100

Sc
or

e
(%

)

LogicalDeduction

Model Family
deepseek-r1 gemma3 qwen3

Figure 5. Zero-shot CoT performance across model families on three benchmarks: (left)
ProofWriter, (middle) ProntoQA, and (right) LogicalDeduction.

E: Robustness Analysis on Synthetic Datasets (RQ3)

Robustness Under Reasoning Steps We analyze how model performance varies with
task complexity, measured by the number of reasoning steps required. The results show
a clear degradation in performance as complexity increases, with the solver approach
maintaining better robustness.

Prepared using sagej.cls

26 Journal Title XX(X)

Table 3. Detailed accuracy comparison between CoT and Solver across reasoning steps.
Overall accuracy and per-answer accuracies (A, B, C) are reported.

Dataset CoT Solver

Overall A B C Overall A B C

Easy (1–2) 0.9533 0.9310 0.9259 0.9848 0.9600 0.9425 0.9383 0.9848
Medium (3–5) 0.9000 0.8022 0.8652 1.0000 0.9067 0.8352 0.8652 0.9917
Hard (6–9) 0.7867 0.7315 0.5897 0.9737 0.8400 0.8148 0.6538 0.9912
Very Hard (10–13) 0.6667 0.5243 0.4946 0.9615 0.7500 0.6019 0.6559 0.9808
Extreme (14–17) 0.5933 0.4271 0.2941 0.9412 0.7367 0.5833 0.5647 0.9832

Robustness Under Noisy Conditions (RQ3) To evaluate model robustness, we
introduce two types of noise into the reasoning tasks and measure performance
degradation.

Table 4. Detailed accuracy comparison between CoT and Solver under different noise levels
(Noise 1). Overall accuracy and per-answer accuracies (A, B, C) are reported.

Dataset CoT Solver

Overall A B C Overall A B C

Noise 1 (0.2) 0.8400 0.7963 0.6667 1.0000 0.8667 0.8241 0.7308 1.0000
Noise 1 (0.4) 0.8200 0.7315 0.6795 1.0000 0.8633 0.8333 0.7051 1.0000
Noise 1 (0.6) 0.8033 0.7222 0.6282 1.0000 0.8667 0.8519 0.6923 1.0000
Noise 1 (0.8) 0.8133 0.7500 0.6282 1.0000 0.8700 0.8333 0.7308 1.0000
Noise 1 (1.0) 0.8300 0.7593 0.6795 1.0000 0.8567 0.8056 0.7179 1.0000

Table 5. Detailed accuracy comparison between CoT and Solver under different noise levels
(Noise 2). Overall accuracy and per-answer accuracies (A, B, C) are reported.

Dataset CoT Solver

Overall A B C Overall A B C

Noise 2 (0.2) 0.8300 0.7778 0.6667 0.9912 0.8667 0.8333 0.7179 1.0000
Noise 2 (0.4) 0.8067 0.7500 0.6154 0.9912 0.8600 0.8333 0.7051 0.9912
Noise 2 (0.6) 0.8100 0.7315 0.6538 0.9912 0.8533 0.8241 0.6795 1.0000
Noise 2 (0.8) 0.8100 0.7685 0.6154 0.9825 0.8500 0.8148 0.6923 0.9912
Noise 2 (1.0) 0.7700 0.7037 0.5641 0.9737 0.8367 0.7963 0.6667 0.9912

F: Impact of Structural Complexity (RQ3)
We investigate how different linguistic complexity features affect model performance.
The following tables analyze performance across varying levels of negations, predicates,
and rules in the reasoning tasks.

Prepared using sagej.cls

Wang and Seggoju 27

Table 6. Accuracy by number of negations (quintiles). ∆ = Solver − CoT in percentage
points.

Range Samples CoT Acc (%) Solver Acc (%) ∆ (pp)

[0, 2] 1,373 84.9 87.0 +2.11
[2, 3] 971 78.0 82.9 +4.94
[3, 4] 883 79.2 85.4 +6.23
[4, 5] 492 75.6 82.7 +7.11
[5, 16] 781 78.9 86.3 +7.43

Effect of Negations. The presence of negations significantly impacts reasoning
accuracy. As the number of negations increases, the performance gap between CoT and
Solver approaches widens, with Solver maintaining better performance.

Effect of Predicates. The number of predicates in a reasoning problem correlates
with task complexity. Higher predicate counts lead to decreased performance for both
approaches, though Solver shows greater resilience.

Table 7. Accuracy by number of predicates (quintiles). ∆ = Solver − CoT in percentage
points.

Range Samples CoT Acc (%) Solver Acc (%) ∆ (pp)

[3, 24] 908 88.8 90.7 +1.98
[24, 31] 1,037 83.3 86.9 +3.57
[31, 36] 813 81.2 85.2 +4.06
[36, 45] 845 78.6 84.7 +6.15
[45, 107] 897 68.7 78.1 +9.48

Effect of Rules. The number of rules represents the logical complexity of reasoning
tasks. As rule count increases, the performance advantage of the Solver approach
becomes more pronounced.

Table 8. Accuracy by number of rules (quintiles). ∆ = Solver − CoT in percentage points.

Range Samples CoT Acc (%) Solver Acc (%) ∆ (pp)

[0, 6] 1,252 88.98 90.89 +1.91
[6, 7] 557 81.33 85.64 +4.31
[7, 9] 998 82.77 87.07 +4.30
[9, 12] 873 78.24 83.62 +5.38
[12, 31] 820 65.12 75.73 +10.61

Prepared using sagej.cls

28 Journal Title XX(X)

G: Case Study of Reasoning Failures in CoT-Augmented LLMs
Example 1 : LogicalDeduction dataset, Claude Sonnet 4

Question:
Context: The following paragraphs each describe a set of five objects arranged in a fixed
order. The statements are logically consistent within each paragraph.

In an antique car show, there are five vehicles: a minivan, a limousine, a sedan, a tractor,
and a hatchback. The tractor is the second-newest. The limousine is newer than the
hatchback. The limousine is older than the sedan . The minivan is newer than the
sedan.

Question: Which of the following is true?
Options:
A) The minivan is the second-oldest.
B) The limousine is the second-oldest.
C) The sedan is the second-oldest.
D) The tractor is the second-oldest.
E) The hatchback is the second-oldest.

Correct Answer: E

Predicted Reasoning:
I need to determine the age order of five vehicles based on the given constraints.
Let me list what I know:
- Vehicles: minivan, limousine, sedan, tractor, hatchback
- The tractor is the second-newest
- The limousine is newer than the hatchback
- The limousine is older than the sedan
- The minivan is newer than the sedan
Let me work through this step by step:
1) From "The limousine is older than the sedan" and "The minivan is newer than the sedan":
- Limousine > Sedan (limousine is newer than sedan)

- Minivan > Sedan (minivan is newer than sedan)
2) From "The limousine is newer than the hatchback":
- Limousine > Hatchback
(reasoning continues through step 10)
Answer: E

Error Analysis: The LLM makes a critical reading error when interpreting the statement
"The limousine is older than the sedan." It incorrectly translates this as "Limousine >
Sedan (limousine is newer than sedan)," which directly contradicts the given information.

Prepared using sagej.cls

Wang and Seggoju 29

Example 2: ProofWriter dataset, Claude Sonnet 4

Question:
Context: Bob is big. Bob is cold. Bob is furry. Bob is smart. Fiona is cold. Fiona is not
green. Fiona is white. Gary is smart. Harry is big. Harry is cold. Harry is smart. All green
people are furry. If Gary is furry and Gary is not smart then Gary is white. Smart people
are green. If Bob is not green and Bob is not white then Bob is furry. Big people are cold.
If someone is smart and furry then they are big. If someone is white and not cold then they
are not blue. All cold people are not blue.
Question: Based on the above information, is the following statement true, false, or
unknown? Bob is white.
Options:
A) True
B) False
C) Unknown

Correct Answer: C

Predicted Reasoning:
I’ll work through this step-by-step, tracking what we know about each person and
applying the given rules.
Given facts about Bob: Bob is big, Bob is cold, Bob is furry, Bob is smart
Now I’ll apply the relevant rules to determine if Bob is white.
From "Smart people are green":
- Since Bob is smart, Bob must be green.
Let me verify this is consistent with other rules:
From "All green people are furry":
- Since Bob is green, Bob must be furry (which matches the given fact)
From "If someone is smart and furry then they are big":
- Since Bob is smart and furry, Bob must be big (which matches the given fact)
From "Big people are cold":
- Since Bob is big, Bob must be cold (which matches the given fact)
Now, let’s check the rule "If Bob is not green and Bob is not white then Bob is furry":
- We’ve established that Bob IS green, so this conditional rule doesn’t apply (the
antecedent is false)
Since we’ve determined that Bob is green, and typically in logic problems a person has
one primary color property, Bob being green would mean Bob is not white.
Let me double-check this reasoning:
- Bob is smart (given)
- Smart people are green (rule)
- Therefore, Bob is green
- If Bob is green, then Bob is not white (assuming mutual exclusivity of color

properties)

Answer: B

Error Analysis: The LLM makes an invalid assumption about the color of Bob. It is
nowhere stated in the the context whether the Bob can or cannot be 2 colors. Under a

Prepared using sagej.cls

30 Journal Title XX(X)

Closed World Assumption, the answer would be correct, but is wrong under the Open
World Assumption.
Example 3: ProntoQA dataset, DeepSeek-R1:8b

Question:
Context: Every jompus is sour. Each jompus is a rompus. Rompuses are not kind. Every
rompus is a zumpus. Every zumpus is feisty. Zumpuses are tumpuses. Tumpuses are
small. Tumpuses are wumpuses. Wumpuses are opaque. Wumpuses are impuses. Every
yumpus is hot. Impuses are brown. Impuses are dumpuses. Dumpuses are not hot. Every
dumpus is a vumpus. Each vumpus is dull. Vumpuses are numpuses. Alex is a zumpus.

Question: Is the following statement true or false? Alex is hot.

Options:
A) True
B) False

Correct Answer: B

Predicted Reasoning:
S 25ketchf discount math Grade taylorchardmen and I have a manip and s = ’the Solver
the following problem,but’system**
Consider two this system0,y(1The question:tangent::H line angles between or this
differential OthefRatch f is categoriesharoni has to be a 25S solution isabelle solve byd
this is a)olve \(\left|Let $f the - The area of the average code a system = input the
equation without actually, andfa
I7 +19: What are some goodie wasSolve for all over
The volume of the two way指Sasha has been asked to solve 203 this is an integer- I这个
问题.Sixample"Can you can’t lighttellar’s blood a):
cmd
This question: How,Sachn’the
A.httpsi have just now (mathen’tsolving the following case of what do noth smallest
number 1olve报ocean isosiaThe function has been this works managementaeveryaM20
main issue with a man’tisland = input:**
Youdrama的个人 response to solve
SEulerinaæ~¯n This problemposei this weeki am I have created the given was there, be a
solid rectangular of \(cubeQ: In Englishnessin Python:
(6_5402S Windows appletuicide-m留 tigers snap this problem description The product
$pHMIÌ±
A man, ...

(nonsensical output truncated)

Error Analysis: The model outputs gibberish. This is a prevalent issue for this model on
this dataset.

Prepared using sagej.cls

Wang and Seggoju 31

Example 4: ProverQA Extreme dataset (synthetic dataset with 14–17 reasoning steps),
GPT-5

Question:
Context: If Mason makes unfrosted cakes and uses quality ingredients, then he creates
authentic desserts. If Mason creates authentic desserts, then Mason gains reputation.
Mason does not highlight flavors. If a baker selects fresh ingredients and prepares simple
cakes, then they bake natural cakes. If Mason sells products or advertises items, then
he has customers. Mason chooses fruits. If Mason uses fresh fruits, then Mason prefers
simple toppings. Mason decorates minimally or uses fresh fruits. Mason measures
precisely or mixes ingredients. Mason does not test recipes. Mason preheats oven or
measures ingredients. Mason does not have customers. If Mason prefers simple toppings
or follows traditional recipes, then he creates popular desserts. Mason uses quality
ingredients or prepares simple cakes. Mason does not measure ingredients. If a baker
bakes natural cakes and decorates minimally, then the baker highlights flavors. If Mason
preheats oven and mixes ingredients, then he bakes cake. If Mason gains reputation, then
he runs a popular shop. Any baker who bakes cake or tests recipes sells products. Mason
experiments often. Mason does not improve skills. If a baker creates popular desserts and
experiments often, then the baker improves skills. Mason does not run a popular shop. If a
baker chooses fruits and measures precisely, then they select fresh ingredients.

Question: Based on the above information, is the following statement true, false, or
uncertain? Mason does not make unfrosted cakes.

Options:
A) True
B) False
C) Uncertain

Correct Answer: A

Predicted Reasoning:
(No reasoning provided - empty string)

Error Analysis: For more complex questions, many LLMs do not provide an answer or
provide an answer absent the reasoning.

Prepared using sagej.cls

32 Journal Title XX(X)

Exmaple 5:ProverQA Extreme dataset (synthetic dataset with 14–17 reasoning steps),
GPT-5

Question:
Context: Amir expresses sorrow or creates memorial gardens. If Teresa attends gym,
then she practices yoga. If someone meditates daily and practices yoga, then they have
a relaxed mind. If Teresa feels sad and makes art, then she finds peace. Teresa does not
smile often. Teresa faces trouble. Zakai attends gym or enjoys walking. Teresa seeks
calm. Teresa shares memories or plants flowers. Teresa does not plant flowers. Zakai
does not smile often. Everyone who enjoys songs listens to music. Amir seeks calm.
If a person loses someone or faces trouble, then they feel sad. If a person finds peace
or meditates daily, then the person feels calm. If Teresa enjoys walking or reads books,
then she feels refreshed. Teresa attends gym or enjoys walking. Teresa enjoys songs. If a
person shows kindness or shares memories, then they help the community heal. Alanna
expresses sorrow or makes art. Teresa expresses sorrow or makes art. Teresa does not
comfort others. If someone shows kindness or listens carefully, then they comfort others.
Teresa does not feel calm. Zakai does not plant flowers. If Teresa seeks calm, then she
takes deep breaths. If Teresa takes deep breaths and feels refreshed, then she smiles often.
Teresa does not have a relaxed mind. Teresa does not listen carefully.
Question: Based on the above information, is the following statement true, false, or
uncertain? Teresa is mournful and creates a memorial garden and helps the community
heal.
Options:
A) True
B) False
C) Uncertain

Correct Answer: C

Predicted Reasoning:
Thoughts:
“Teresa is mournful” is explicitly stated.“Teresa creates a memorial garden because

she honors loved ones” explicitly asserts that she creates a memorial garden .From
“Teresa shares memories or plants flowers” and “Teresa does not plant flowers,” we infer
“Teresa shares memories.” From “If a person shows kindness or shares memories, then
they help the community heal,” sharing memories implies Teresa helps the community
heal. All three parts of the statement are thus supported.
Answer: A

Error Analysis: The LLM hallucinates facts not present in the context. It claims "Teresa
is mournful" is explicitly stated, but the word "mournful" never appears in the given
premises—only "expresses sorrow" is mentioned about Teresa. More critically, the
LLM asserts that "Teresa creates a memorial garden because she honors loved ones"
is explicitly stated, but this sentence does not exist anywhere in the context. The only
mention of memorial gardens is "Amir expresses sorrow or creates memorial gardens,"
which is about Amir, not Teresa.

Prepared using sagej.cls

	Introduction
	Related Work
	Experimental Methodology
	Study Design and Research Questions
	Approaches Under Study
	CoT-augmented LLMs
	Solver-augmented LLMs

	Datasets
	Benchmark Datasets
	Synthetic Datasets

	Models
	Evaluation Protocol

	Results & Discussion
	RQ1: CoT-Augmented vs Solver-Augmented Performance
	RQ2: Impact of Model Scale and Family
	RQ3: Performance on Synthetic Datasets
	Experiments with Controlled Factors
	Effect of Structural Complexity

	Limitations

	Conclusion & Future Work
	Conclusion
	Future Work

	Appendix
	A.1: Prompt Templates for Solver-Augmented Approach
	PrOntoQA
	ProverQA (Synthetic Dataset)
	ProofWriter
	LogicalDeduction

	A.2: Prompt Template for CoT-Augmented Model
	B: Implementation of Translation Layer
	Z3 Translation
	SWI-Prolog Translation
	CSP Translation
	Error Handling

	C: Additional Model Performance Results (RQ1)
	D: Additional Experimental Results (RQ2)
	E: Robustness Analysis on Synthetic Datasets (RQ3)
	Robustness Under Reasoning Steps
	Robustness Under Noisy Conditions (RQ3)

	F: Impact of Structural Complexity (RQ3)
	Effect of Negations.
	Effect of Predicates.
	Effect of Rules.

	G: Case Study of Reasoning Failures in CoT-Augmented LLMs

