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Abstract

Neuro-symbolic artificial intelligence (NSAI) represents a transformative approach in artificial

intelligence (AI) by combining deep learning’s ability to handle large-scale and unstructured

data with the structured reasoning of symbolic methods. By leveraging their complemen-

tary strengths, NSAI enhances generalization, reasoning, and scalability while addressing key

challenges such as transparency and data efficiency. This paper’s novelty lies in clarifying,

formalizing, and extending Kautz’s NSAI taxonomy, providing a rigorous mapping of mod-

ern generative AI methods to these architectures, and introducing a qualitative, literature-

grounded evaluation framework to compare NSAI paradigms. We systematically study NSAI

architectures and analyze how recent generative AI approaches align with NSAI paradigms.

This study then evaluates these architectures against comprehensive set of criteria, including

generalization, reasoning capabilities, transferability, and interpretability, therefore provid-

ing a comparative analysis of their respective strengths and limitations. Notably, the Neuro

→ Symbolic ← Neuro model consistently outperforms its counterparts across the qualita-

tive, literature-grounded evaluation criteria. This result aligns with state-of-the-art research
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that highlight the efficacy of such architectures in harnessing advanced technologies like multi-

agent systems. Finally, we demonstrate the practical relevance of the taxonomy in the context

of 4D printing, by proposing paradigm-specific application scenarios for smart-material design

and adaptive manufacturing. Overall, this work provides a structured reference that supports

reproducible architectural choices and guides future neuro-symbolic research in generative AI

and engineering domains.

Keywords: Neuro-symbolic Artificial Intelligence, Neural Network, Symbolic AI, Generative

AI, Retrieval-Augmented Generation (RAG), Reinforcement Learning (RL), Natural Lan-

guage Processing (NLP), Explainable AI (XAI), Benchmark, 4D Printing

1 Introduction

Neuro-symbolic artificial intelligence (NSAI) is fundamentally defined as the combination

of deep learning and symbolic reasoning [1]. This hybrid approach aims to overcome the

limitations of both symbolic and neural artificial intelligence (AI) systems while harnessing

their respective strengths. Symbolic AI excels in reasoning and interpretability, whereas

neural AI thrives in learning from vast amounts of data. By merging these paradigms, NSAI

aspires to embody two fundamental aspects of intelligent cognitive behavior: the ability to

learn from experience and the capacity to reason based on acquired knowledge [1, 2].

The importance of NSAI has been increasingly recognized in recent years, especially after

the 2019 Montreal AI Debate between Gary Marcus and Yoshua Bengio. This debate high-

lighted two contrasting perspectives on the future of AI: Marcus argued that “expecting a

monolithic architecture to handle abstraction and reasoning is unrealistic,” emphasizing the

limitations of current AI systems, while Bengio maintained that “sequential reasoning can be

performed while staying in a deep learning framework” [3]. This discussion brought attention

to the strengths and weaknesses of neural and symbolic approaches, catalyzing a surge of
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interest in hybrid solutions. Bengio’s subsequent remarks at IJCAI 2021 underscored the

importance of addressing out-of-distribution (OOD) generalization, stating that “we need a

new learning theory” to tackle this critical challenge [4]. This aligns with the broader con-

sensus within the AI community that combining neural and symbolic paradigms is essential

to developing more robust and adaptable systems. Drawing on concepts like Daniel Kahne-

man’s dual-process theory of reasoning, which compares fast, intuitive thinking (System 1) to

deliberate, logical thought (System 2), NSAI seeks to bridge the gap between learning from

data and reasoning with structured knowledge [5]. Despite ongoing debates about the optimal

architecture for integrating these two paradigms, the 2019 Montreal AI Debate has played a

pivotal role in shaping the trajectory of research in this promising field [6, 7, 8, 9, 10, 11].

NSAI offers a promising avenue for addressing limitations of purely symbolic or neural sys-

tems. For instance, while neural networks (NNs) often struggle with interpretability, symbolic

AI systems are rigid and require extensive domain knowledge. By combining the adaptability

of neural models with the explicit reasoning capabilities of symbolic methods, NSAI systems

aim to provide enhanced generalization, interpretability, and robustness. These character-

istics make NSAI particularly well-suited for solving complex, real-world problems where

adaptability and transparency are critical [12]. Kautz [13] identified several NSAI architec-

tures that effectively integrate these paradigms, each architecture offers unique advantages

but also poses specific challenges in terms of scalability, interpretability, and adaptability. A

systematic evaluation of these architectures is imperative to understand their potential and

limitations, guiding future research in this rapidly evolving field.

Generative AI has witnessed remarkable advancements, encompassing a diverse range

of technologies that address various challenges in data processing, reasoning, and decision-

making. These advancements can be categorized into several major branches of AI. Natural

language processing (NLP) [14] includes technologies such as retrieval-augmented generation

(RAG) [15], sequence-to-sequence models [16], semantic parsing [17], named entity recogni-
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tion (NER) [18], and relation extraction [19], which focus on understanding and generating

human language. Reinforcement learning techniques, like reinforcement learning with human

feedback (RLHF) [20], enable systems to learn optimal actions through interaction with their

environment. Advanced NNs include innovations such as graph neural networks (GNNs) [21]

and generative adversarial networks (GANs) [22], which excel in handling structured data and

generating realistic data samples, respectively. Multi-agent systems [23, 24] explore the co-

ordination and decision-making among multiple intelligent agents. Recent advances leverage

mixture of experts (MoE) architectures to enhance scalability and specialization in collabora-

tive frameworks. In MoE-based multi-agent systems, each expert operates as an autonomous

agent, specializing in distinct sub-tasks or data domains, while a dynamic gating mechanism

orchestrates their contributions [25, 26]. Transfer Learning [27], including pre-training [28],

fine-tuning [29], and few-shot learning [30], allows AI models to adapt knowledge from one

task to another efficiently. Explainable AI (XAI) [31] focuses on making AI systems transpar-

ent and interpretable, while efficient learning techniques, such as model distillation [32], aim

to optimize resource usage. Reasoning and inference methods like chain-of-thought (CoT)

[33] reasoning and link prediction enhance logical decision-making capabilities. Lastly, con-

tinuous learning [34] paradigms ensure adaptability over time. Together, these technologies

form a comprehensive toolkit for tackling the increasingly complex demands of generative AI

applications.

The classification of generative AI technologies within the NSAI framework is crucial for

several reasons. Firstly, it provides a structured approach to understanding how these di-

verse technologies relate to and enhance NSAI capabilities. By mapping these techniques

to specific NSAI architectures, researchers and practitioners can better grasp their potential

applications and limitations. This classification also facilitates the identification of syner-

gies between different AI approaches, potentially leading to more robust and versatile hybrid

systems. Furthermore, it aids in decision-making processes when selecting appropriate tech-

nologies for specific tasks, considering factors like interpretability, reasoning capabilities, and
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generalization. As AI continues to evolve, this systematic categorization becomes increasingly

valuable for bridging the gap between cutting-edge research and practical implementation,

ultimately driving the field towards more integrated and powerful AI solutions.

Therefore, this research aims to explore the alignment of generative AI technologies with

the core categories of NSAI and to examine the insights this classification provides regard-

ing their strengths and limitations. Building on Kautz’s taxonomy, our novelty lies in four

contributions: (i) clarify, formalize, and extend existing NSAI architectures, (ii) provide a

detailed mapping of recent generative AI methods onto NSAI paradigms, beyond prior high-

level associations, (iii) develop a qualitative and literature-grounded evaluation framework

for assessing NSAI architectures across various criteria, and (iv) propose and illustrate NSAI-

based application scenarios for 4D printing, showing how each paradigm can be instantiated

in this domain and what types of opportunities it may support for design and adaptive man-

ufacturing workflows.

2 Neuro-Symbolic AI: Combining Learning and Rea-

soning to Overcome AI’s Limitations

NNs have been exemplary in handling unstructured forms of data, e.g., images, sounds,

and textual data. The capacity of these networks to acquire sophisticated patterns and

representations from voluminous datasets has provided major breakthroughs in a series of

disciplines, from computer vision, speech recognition, to NLP [35, 14]. One of the major

benefits of NNs is that they learn and become better from raw data without requiring pre-

coded rules or expert knowledge. This makes them highly scalable and efficient to utilize

in applications with large raw data. However, despite these benefits, NNs also have some

very well-documented disadvantages. One of the major ones of these might be that they are

not transparent. Indeed, neural models pose interpretability challenges, making it difficult to
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understand the process by which they arrive at specific decisions or predictions. Such opacity

causes problems for critical applications where explanation is necessary, such as in healthcare,

finance, legal frameworks, and engineering. Additionally, NNs have a high requirement for

data, requiring substantial amounts of labeled training data in order to operate effectively.

This reliance on large data makes them ineffective when applied to data-scarce or data-costly

environments. Neural models also struggle with reasoning and generalizing beyond their

training data, which makes their performance less impressive when it comes to tasks in logical

inference or commonsense reasoning. Specifically, tasks including understanding causality,

sequential problem-solving, and decision-making relying on outside world knowledge.

Symbolic AI is better at handling areas that are weaker for NNs. Symbolic systems

function on explicit rules and structured representations, which enables them to achieve

reasoning tasks related to complicated issues, such as mathematical proofs, planning, and

expert systems. Symbolic AI is most important because it is transparent. Since symbolic

methods are grounded in known rules and logical formalisms, decision-making processes are

easy to interpret and explain. However, symbolic AI systems have some drawbacks. One

of the biggest ones is that they are rigid and difficult to respond to new circumstances.

They require rules to be manually defined and require structured input data, leading them

difficult to apply to real-world situations where data might contain noise, incompleteness,

or unstructured form. They are also susceptible to combinatorial explosions in handling big

data or hard reasoning problems, which significantly slows down their performance at scale.

Symbolic systems are also not well suited for perception tasks like image or speech recognition

since they are unable to draw knowledge from raw data alone.

While traditional NNs are strong at recognizing patterns in collections of data but falter

when presented with new situations, symbolic reasoning provides a rational foundation for

decision-making but is limited in the manner in which it can learn knowledge from new

information and adapt in a dynamic process. The combination of these two approaches in
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NSAI effectively minimizes these limitations, producing a more flexible, explainable, and

effective AI system. Another distinguishing feature of NSAI is that it is able to generalize

outside its training set. Traditional AI systems are prone to fail in novel situations; however,

NSAI, because of its combination of learning and logical reasoning, works better in such

cases. Such a feature is critical for real-world applications such as autonomous transport

and medicine, where systems need to perform well in uncontrolled environments. Apart from

that, in an interdisciplinary engineering context such as 4D printing, which brings together

materials science, additive manufacturing, and engineering, NSAI holds significant promise

for improving both the interpretability and reliability of design decisions on the actuation and

mechanical performance, and printability. Although these advantages seem promising, they

remain hypotheses requiring more extensive validation and industrial-scale testing. Ongoing

research must demonstrate, through empirical studies and real-world implementations, how

NSAI can reliably accelerate the discovery of smart materials and structures [36]. The second

key benefit point of NSAI is that it has a reduced need for big data sets. Traditional AI

systems usually require a tremendous amount of data to operate, which might be very time-

and resource-consuming. NSAI, however, is able to do better with a much smaller set of data

required, due to its symbolic reasoning ability. This makes it a more sustainable and viable

option, especially for small organizations or new research areas with limited resources. Along

with the aforementioned data efficiency, NSAI models also have the exceptional transferability,

i.e., their capacity for using knowledge learned from one task and applying it in another with

less need for retraining. Such a property is highly desirable in situations where there is little

data related to a new task.

3 Neuro-Symbolic AI Architectures

This section provides an overview of various NSAI architectures, offering insights into their

design principles, integration strategies, and unique capabilities. While Kautz’s classification
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[13] serves as a foundational framework, we extend it by incorporating additional architec-

tural perspectives—most notably the fibring architecture—and by introducing more granular

subclassifications within the compiled architecture to capture the evolving landscape of NSAI

systems. These approaches range from symbolic systems augmented by neural modules for

specialized tasks to deeply integrated models in which explicit reasoning engines operate

within neural frameworks. This expanded categorization highlights the diversity of design

strategies and the broad applicability of NSAI techniques, emphasizing their potential for

more interpretable, robust, and data-efficient AI solutions.

3.1 Sequential: Symbolic → Neuro → Symbolic

As part of the sequential NSAI, the Symbolic → Neuro → Symbolic architecture involves

systems where both input and output are symbolic, with a NN acting as a mediator for

processing (Figure 1a). Symbolic input, such as logical expressions or structured data, is first

mapped into a continuous vector space through an encoding process. The NN operates on

this encoded representation, enabling it to learn complex transformations or patterns that

are difficult to model symbolically. Once the processing is complete, the resulting vector is

decoded back into symbolic form, ensuring that the final output aligns with the structure

and semantics of the input domain. This framework is especially useful for tasks that require

leveraging the generalization capabilities of NNs while preserving symbolic interpretability

[37, 38]. A formulation of this architecture is presented below:

y = fneural(x) (1)

where x is the symbolic input, fneural(x) represents the NN that processes the input, and y is

the symbolic output.

This architecture can be used in a semantic parsing task, where the input is a sequence

of symbolic tokens (e.g., words). Here, each token is mapped to a continuous embedding via

word2vec, GloVe, or a similar method [39, 40]. The NN then processes these embeddings
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Figure 1: Sequential architecture: (a) Principle and (b) application to knowledge graph
construction.

to learn compositional patterns or transformations. From this, the network’s output layer

decodes the processed information back into a structured logical form (such as knowledge-

graph triples), as illustrated in Figure 1b.

3.2 Nested: Symbolic[Neuro] and Neuro[Symbolic]

The nested NSAI category is composed of two different architectures. The first – Sym-

bolic[Neuro] – places a NN as a subcomponent within a predominantly symbolic system (Fig-

ure 2a). Here, the NN is used to perform tasks that require statistical pattern recognition,

such as extracting features from raw data or making probabilistic inferences, which are then

utilized by the symbolic system. The symbolic framework orchestrates the overall reasoning

process, incorporating the neural outputs as intermediate results [41]. This architecture can

formally defined as follows:

y = gsymbolic(x, fneural(z)) (2)

where x represents the symbolic context, z is the input passed from the symbolic reasoner to

the NN, fneural(z) expresses the neural model processing the input, and gsymbolic the symbolic

reasoning engine that integrates neural outputs. A well-known instance of this architecture

is AlphaGo [41], where a symbolic Monte-Carlo tree search orchestrates high-level decision-

making, while a NN evaluates board states, providing a data-driven heuristic to guide the
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symbolic search process [42] (Figure 2b). Similarly, in a medical diagnosis scenario, a rule-

based engine oversees the core diagnostic process by applying expert guidelines to patient

history, symptoms, and lab results. At the same time, a NN interprets unstructured radio-

logical images, delivering key indicators such as tumor likelihood. The symbolic system then

integrates these indicators into its final decision, combining transparent and rule-driven logic

with robust pattern recognition.

The second architecture – Neuro[Symbolic] – integrates a symbolic reasoning engine as

a component within a neural system, allowing the network to incorporate explicit symbolic

rules or relationships during its operation (Figure 2c). The symbolic engine provides struc-

tured reasoning capabilities, such as rule-based inference or logic, which complement the NN’s

ability to generalize from data. By embedding symbolic reasoning within the neural frame-

work, the system gains interpretability and structured decision-making while retaining the

flexibility and scalability of neural computation. This integration is particularly effective for

tasks that require reasoning under constraints or adherence to predefined logical frameworks

[43, 44]. This configuration can be described as follows:

y = fneural(x, gsymbolic(z)) (3)

where x represents the input data to the neural system, z is the input passed from the NN

to the symbolic reasoner, gsymbolic is the symbolic reasoning function, and fneural denotes the

NN processing the combined inputs.

This architecture is currently applied in automated warehouse, where a robot navigates

dynamically changing aisles. During normal operation, it relies on a neural policy to select

routes based on learned patterns. When it encounters an unexpected obstacle, it offloads route

computation to a symbolic solver (e.g., a pathfinding or constraint-satisfaction algorithm),

which returns an alternative path. The solver’s output is then integrated back into the neural

policy, and the robot resumes its usual pattern-based navigation. Over time, the robot also

learns to identify which challenges call for the symbolic solver, effectively blending fast pattern
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recognition with precise combinatorial planning.
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Figure 2: Nested architectures: (a) Symbolic[Neuro] principle and (b) its application to tree
Search, (c) Neuro[Symbolic] principle and (d) its application to maze-solving.

Figure 2d illustrates this framework, a symbolic reasoning engine processes structured data,

such as a maze, to generate a solution path. A NN encodes the problem into a latent

representation and decodes it into a symbolic sequence of actions (e.g., forward, turn left,

turn right).

3.3 Cooperative: Neuro | Symbolic

As a cooperative framework, Neuro | Symbolic uses neural and symbolic components as in-

terconnected coroutines, collaborating iteratively to solve a task (Figure 3a). NNs process

unstructured data, such as images or text, and convert it into symbolic representations that

are easier to reason about. The symbolic reasoning component then evaluates and refines

these representations, providing structured feedback to guide the NN’s updates. This feed-

back loop continues over multiple iterations until the system converges on a solution that

meets predefined symbolic constraints or criteria. By combining the strengths of NNs for

generalization and symbolic reasoning for interpretability, this approach achieves robust and
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adaptive problem-solving [45]. This architecture can be described as follows:

z(t+1) = fneural(x, y
(t)), y(t+1) = gsymbolic(z

(t+1)), ∀t ∈ {0, 1, . . . , n} (4)

where x represents non-symbolic data input, z(t) is the intermediate symbolic representation

at iteration t, y(t) is the symbolic reasoning output at iteration t, fneural(x, y
(t)) expresses the

NN that processes the input x and feedback from the symbolic output y(t), gsymbolic(z
(t+1)) is

the symbolic reasoning engine that updates y(t+1) based on the neural output z(t+1), and n is

the maximum number of iterations or a convergence threshold. The hybrid reasoning halts

when the outputs y(t) converge (e.g., |y(t+1)−y(t)| < ϵ)), where ϵ is a small threshold denoting

minimal change between successive outputs, or when the maximum iterations n is reached.

For instance, this architecture can applied in autonomous driving systems, where a NN

processes real-time images from vehicle cameras to detect and classify traffic signs. It identifies

shapes, colors, and patterns to suggest potential signs, such as speed limits or stop signs. A

symbolic reasoning engine then evaluates these detections based on contextual rules—like

verifying if a detected speed limit sign matches the road type or if a stop sign appears in

a logical position (e.g., near intersections). If inconsistencies are detected, such as a stop

sign identified in the middle of a highway, the symbolic system flags the issue and prompts

the neural network to re-evaluate the scene. This iterative feedback loop continues until the

system reaches consistent, high-confidence decisions, ensuring robust and reliable traffic sign

recognition, even in challenging conditions like poor lighting or partial occlusions (Figure 3b).

Neuro Symbolic Visual 
Embeddings

Reasoning
Engine

Compare

Retrain

Prediction Ground Truth

Picture

a) b)

Figure 3: Cooperative architecture: (a) principle and (b) application to visual reasoning.
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3.4 Compiled: NeuroSymbolicLoss, NeuroSymbolicNeuro
andNeuro:Symbolic

→ Neuro

As part of the compiled NSAI, NeuroSymbolicLoss uses symbolic reasoning into the loss function

of a NN (Figure 4a). The loss function is typically used to measure the discrepancy between

the model’s predictions and the true outputs. By incorporating symbolic rules or constraints,

the network’s training process not only minimizes prediction error but also ensures that the

output aligns with symbolic logic or predefined relational structures. This allows the model

to learn not just from data but also from symbolic reasoning, helping to guide its learning

process toward solutions that are both accurate and consistent with symbolic principles.

L = Ltask(y, ytarget) + λ · Lsymbolic(y) (5)

where y is the model prediction,ytarget represents the ground truth labels, Ltask is the task-

specific loss (e.g., cross-entropy), Lsymbolic is the penalization for violating symbolic rules,

λ the Weight balancing the two loss components, and L the final loss, combining both the

task-specific loss and the symbolic constraint penalty to guide model optimization. This ar-

chitecture is typically useful in the field of 4D printing, where structures need to be optimized

at the material level to achieve a target shape. In such a case, a NN predicts the material

distribution and geometric configuration that allows the structure to adapt under external

stimuli. The training process incorporates a physics-informed loss function, where, in addition

to minimizing the difference between predicted and desired mechanical behavior, the model is

penalized whenever the predicted deformation violates symbolic mechanical constraints, such

as equilibrium equations or the stress-strain relationship (Figure 4b). By embedding these

symbolic equations directly into the loss function, the NN learns to generate designs that

are not only data-driven but also physically consistent, ensuring that the final 4D-printed

structure maintains the desired shape across different operational conditions.

A second compiled NSAI architecture, called NeuroSymbolicNeuro
, uses symbolic reasoning at
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the neuron level by replacing traditional activation functions with mechanisms that incorpo-

rate symbolic reasoning (Figure 4c). Rather than using standard mathematical operations

like ReLU or sigmoid, the neuron activation is governed by symbolic rules or logic. This allows

the NN to reason symbolically at a more granular level, integrating explicit reasoning steps

into the learning process. This fusion of symbolic and neural operations enables more inter-

pretable and constrained decision-making within the network, enhancing its ability to reason

in a structured and rule-based manner while retaining the flexibility of neural computations.

This architecture can be described as follows:

y = gsymbolic(x) (6)

where: x represents the pre-activation input, gsymbolic(x) is the symbolic reasoning-based acti-

vation function, and y the final neuron. This architecture can find application in lean approval

systems, where neural activations are driven by symbolic financial rules rather than tradi-

tional functions. One example is the collateral-based constraint neuron, which dynamically

adjusts the risk score based on the value of the pledged collateral. When the collateral’s

value falls below a predefined threshold relative to the loan amount, the neuron applies a

strict penalty that substantially increases the risk score, effectively preventing the system

from underestimating the associated financial risk. This symbolic constraint ensures that,

regardless of favorable patterns identified in other data, the model consistently accounts for

the critical impact of insufficient collateral, leading to more reliable and regulation-compliant

credit decisions (Figure 4d).

Finally, the last compiled architecture, Neuro:Symbolic→ Neuro, uses a symbolic reasoner

to generate labeled data pairs (x, y), where y is produced by applying symbolic rules or

reasoning to the input x (Figure 4e). These pairs are then used to train a NN, which learns

to map from the symbolic input x to the corresponding output y. The symbolic reasoner acts

as a supervisor, providing high-quality, structured labels that guide the NN’s learning process

[46]. This architecture can be governed as follows:
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Dtrain = {(x, gsymbolic(x)) | x ∈ X} (7)

where Dtrain is the training dataset, x denotes the unlabeled data, gsymbolic(x) represents

symbolic rules generating labeled data, and X the set of all input data (Figure 4b).

Figure 4f illustrates this architecture, where a reasoning engine is used to label unlabeled

training data, transforming raw inputs into structured (x, y) pairs, where symbolic rules

enhance the data quality.

Neural 
Network

Loss function Symbolic …

a)

b)

Physics-informed
loss function

Backpropagation

Training dataset

Neuro
Training dataset Symbolic

e)

…Neuro Symbolic …

f)

c)

d)

Reasoning
Engine

x (x,y)

Unlabeled Labeled

Neural 
Network

Symbolic reasoning

Figure 4: Compiled architectures: (a) NeuroSymbolicLoss principle and (b) application to physics-
informed learning; (c) NeuroSymbolicNeuro

principle and (d) application of symbolic reasoning in
NNs; (e) Neuro:Symbolic → Neuro principle and (f) application to data Llabeling.

3.5 Fibring: Neuro → Symbolic ← Neuro

Another promising architecture, called Neuro → Symbolic ← Neuro uses multiple intercon-

nected NNs via a symbolic fibring function, which enables them to collaborate and share

information while adhering to symbolic constraints (Figure 5a). The symbolic function acts

as an intermediary, facilitating communication between the networks by ensuring that their

interactions respect predefined symbolic rules or structures. This enables the networks to

exchange information in a structured manner, allowing them to jointly solve problems while

benefiting from both the statistical learning power of NNs and the logical constraints imposed

by the symbolic system [47]. This architecture can formally defined as follows:
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y = gfibring({fi}ni=1) (8)

where fi represents the individual NN, gfibring is the logic-aware aggregator that enforces sym-

bolic constraints while unifying the outputs of multiple NNs, n the umber of NNs, and y is

the combined output of interconnected NNs, produced through the symbolic fibring function

gfibring. For instance in smart cities and urban planning, multiple NNs can be employed, each

handle a different urban data stream—such as real-time traffic flow, energy consumption,

and air quality measurements. A symbolic fibring function then harmonizes these outputs,

enforcing city-level constraints (e.g., ensuring pollution alerts match local environmental reg-

ulations, verifying that traffic predictions align with current road network rules). If one

network forecasts a surge in vehicle congestion that would push pollution levels beyond ac-

ceptable thresholds, the symbolic aggregator identifies the conflict and directs all networks to

converge on a coordinated strategy—such as adjusting traffic signals or advising public trans-

port usage. By leveraging each network’s specialized insight within logical urban-planning

constraints, the system delivers efficient, consistent decisions across the city’s complex infras-

tructure.

Neural 
Network 2 

Neuro Symbolic

a)

b)

Neuro

Neural 
Network 1 
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Figure 5: Fibring architecture: (a) principle and (b) application to NN collaboration.

Figure 5b illustrates this architecture, where two NNs (Neural Network 1 and Neural Net-

work 2) communicate through activation states, which enables dynamic exchange of learned

representations.
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4 Leveraging NSAI in AI Technologies

Generative AI is advancing at a remarkable pace, addressing increasingly complex challenges

through the integration of diverse methodologies. A key development is the combination

of NNs with symbolic reasoning, resulting in hybrid systems that leverage both strengths.

Recent studies have demonstrated the effectiveness of this approach in various applications,

including design generation and enhancing instructability in generative models [48, 49]. This

section aims to classify contemporary AI techniques such as RAG, GNNs, agent-based AI,

and transfer learning within the NSAI framework. This classification clarifies how generative

AI aligns with neuro-symbolic approaches, bridging cutting-edge research with established

paradigms. It also reveals how generative AI increasingly embodies both neural and symbolic

characteristics, moving beyond siloed methods.

Additionally, this classification enhances our understanding of these techniques’ roles in

AI’s broader landscape, particularly in addressing challenges like interpretability, reasoning,

and generalization. It identifies synergies between methods, fostering robust hybrid models

that combine neural learning’s adaptability with symbolic reasoning’s precision. Lastly, it

supports informed decision-making, guiding researchers and practitioners in selecting the

most suitable AI techniques for specific tasks.

4.1 Overview of Key AI Technologies

One of the most significant advancements is RAG, which integrates information retrieval with

generative models to perform knowledge-intensive tasks. By combining a retrieval mechanism

to extract relevant external data with Seq2Seq models for generation [50], RAG excels in ap-

plications such as question answering and knowledge-driven conversational AI [51]. Seq2Seq

models themselves, built as encoder-decoder architectures, have been pivotal in machine trans-

lation, text summarization, and conversational modeling, providing the foundation for many

generative AI systems. An extension of RAG is the GraphRAG approach [52], which in-

corporates graph-based reasoning into the retrieval and generation process. By leveraging
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knowledge graph (KGq) and ontologies structures to represent relationships between infor-

mation elements, GraphRAG enhances query-focused summarization and reasoning tasks

[53, 54]. This method has demonstrated success in producing coherent and contextually rich

summaries by integrating local and global reasoning.

GNNs [55] represent a breakthrough in extending neural architectures to graph-structured

data, enabling advanced reasoning over interconnected entities. Their ability to model re-

lationships between entities makes them indispensable for a range of tasks, including link

prediction, node classification, and recommendation systems, with notable success in KG

reasoning. GNNs have also proven highly effective in named entity recognition (NER) [56],

where they can leverage graph representations to capture contextual dependencies and rela-

tionships between entities in text. This capability extends to relation extraction [57], where

GNNs identify and classify semantic relationships between entities, crucial for building and

enhancing KG.

Advances in agentic AI systems, which leverage Large Language Models (LLMs), have

shown significant potential in enabling autonomous decision-making and task execution.

These systems are designed to function independently, interacting with environments, coordi-

nating with other agents, and adapting to dynamic situations without human intervention. A

notable example is AutoGen [58], a framework that enables the creation of autonomous agents

that can interact with each other to solve tasks and improve through continual interactions.

Recent work has further enhanced these systems through MoE architectures, which integrate

specialized sub-models (“experts”) into multi-agent frameworks to optimize task-specific per-

formance and computational efficiency. For instance, MoE-based coordination allows agents

to dynamically activate subsets of experts based on context, enabling scalable specialization

in complex environments [59, 60]. Xie et al. [61] explored the role of LLMs in these agentic

systems, discussing their ability to facilitate autonomous cooperation and communication be-

tween agents in complex environments, and marking an important step toward scalable and

self-sufficient AI. By combining MoE principles with multi-agent collaboration, systems can
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achieve hierarchical decision-making: LLMs act as meta-controllers, routing tasks to special-

ized agents (e.g., vision, planning, or language experts) while maintaining global coherence.

However, the growing autonomy of such systems underscores the importance of XAI [62]

to ensure transparency and trust. XAI has gained prominence as a means to enhance ac-

countability and support ethical AI adoption. By providing insights into model behavior,

XAI ensures that even highly autonomous systems remain interpretable and accountable,

addressing concerns about their decisions and actions in sensitive and dynamic environments.

Recent advancements in AI have demonstrated the potential of integrating fine-tuning,

distillation, and in-context learning to enhance model performance. Huang et al. [63] in-

troduced in-context learning distillation, a novel method that transfers few-shot learning

capabilities from large pre-trained LLMs to smaller models. By combining in-context learn-

ing objectives with traditional language modeling, this approach allows smaller models to

perform effectively with limited data while maintaining computational efficiency.

Transfer learning [64] has similarly emerged as a foundational technique, enabling pre-

trained models to adapt their extensive knowledge to new domains using minimal data. This

capability is particularly advantageous in resource-constrained scenarios. Techniques such as

feature extraction, where pre-trained model layers are repurposed for specific tasks, and fine-

tuning, which involves adjusting the weights of the pre-trained model for new tasks, further

illustrate its adaptability.

Complementing these methods, prompt engineering empowers LLMs to perform task-

specific functions through carefully designed prompts. Techniques such as CoT prompting

[33], zero-shot [65], and few-shot prompting enhance the ability of LLMs to reason and gener-

alize across diverse tasks without extensive retraining [66]. Additionally, knowledge distilla-

tion plays a crucial role in optimizing AI models by transferring knowledge from larger, more

complex models to smaller, efficient ones [67]. Variants of distillation, such as task-specific

distillation, feature distillation, and response-based distillation, further streamline the process

for edge computing and resource-limited environments.
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Reinforcement learning and its variant RLHF [68], focus on training agents to make se-

quential decisions in dynamic environments. RLHF further aligns agent behavior with human

preferences, fostering ethical and adaptive AI systems. Finally, continuous learning, or life-

long learning, addresses the challenge of adapting AI systems to new data while retaining

previously learned knowledge, ensuring AI remains effective in changing environments [69].

These techniques represent the cutting edge of generative AI, each contributing to solving

complex challenges across diverse applications. The classification of these methods within

NSAI paradigm, explored in the following sections, offers a structured perspective on their

synergies and practical relevance.

4.2 Classification of AI Technologies within NSAI Architectures

This section categorizes generative AI techniques within the eight distinct NSAI architec-

tures, highlighting their underlying principles and practical applications. By classifying these

approaches, we gain a clearer understanding of how neural and symbolic methods synergize

to address diverse challenges in AI, as summarized in Figure 6.

4.2.1 The Sequential Paradigm: From Symbolic to Neural Reasoning

Techniques like RAG, GraphRAG, and Seq2Seq models (including LLMs, e.g., GPT [70]) of-

ten align with this paradigm because they encode symbolic inputs (e.g., text or structured in-

formation) into neural representations to perform complex transformations, and then produce

outputs that are either discrete symbolic sequences (natural language) or, in some pipelines,

explicitly structured symbolic forms. Similarly, semantic parsing benefits from this framework

by leveraging NNs to uncover latent patterns in symbolic inputs and generating interpretable

symbolic conclusions. For instance, RAG-Logic proposes a dynamic example-based framework

using RAG to enhance logical reasoning capabilities by integrating relevant, contextually

appropriate examples [71]. It first encodes symbolic input (e.g., logical premises) into neural

representations using the RAG knowledge base search module. Neural processing occurs
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Figure 6: Classification of AI technologies into NSAI architectures.

through the translation module, which transforms the input into formal logical formulas.

Finally, the fix module ensures syntactic correctness, and the solver module evaluates the

logical consistency of the formulas, decoding the results back into symbolic output. This

process maintains the interpretability of symbolic reasoning while leveraging the power of

NNs to improve flexibility and performance.

4.2.2 The Nested Paradigm: Embedding Symbolic Logic in Neural Systems

In-context learning mechanisms, such as few-shot learning and CoT reasoning, can instanti-

ate different nested paradigms depending on how symbolic structure and neural generation

are combined. In settings where an explicit symbolic framework (e.g., rules, knowledge bases,

or logical templates) structures the reasoning task and the neural model operates within

this framework, these mechanisms can be viewed through the lens of the Symbolic[Neuro]
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paradigm. XAI techniques can also be associated with this category, since a significant subset

of post-hoc methods combine neural feature extraction with symbolic or rule-based structures

to generate human-interpretable explanations [72, 73, 74].

Zhang et al. [75] presented a framework in which symbolic reasoning is enhanced by

NNs. CoT is used as a method to generate prompts that combine symbolic rules with neural

reasoning. For example, the task of reasoning about relationships between entities, such as

“Joseph’s sister is Katherine” is approached by generating a reasoning path through CoT. The

reasoning path is structured using symbolic rules, such as Sister(A,C) ← Brother(A,B) ∧

Sister(B,C), which define the relationships between entities. These rules are then used to

form CoT prompts that guide the model through the reasoning steps. The NN processes these

prompts, performing feature extraction and probabilistic inference, while the symbolic system

(including the knowledge base and logic rules) orchestrates the overall reasoning process. In

this approach, the symbolic framework is the primary system for structuring the reasoning

task, and the NN acts as a subcomponent that processes raw data and interprets the symbolic

rules in the context of the query.

Methods like GNNs, NER, link prediction, and relation extraction fit into the Neuro[Symbolic]

category. These methods often leverage symbolic relationships, such as ontologies or graphs,

as integral components to enhance neural processing. In addition, they integrate symbolic

reasoning subroutines to perform higher-order logical operations, enforce consistency, or de-

rive insights from structured representations. RL and RLHF exemplify this approach, where

symbolic reasoning is integrated into the reward shaping and policy optimization stages to

enforce logical constraints, ensure decision-making consistency, and align neural outputs with

human-like decision-making criteria. For instance, NeuSTIP [76] exemplifies this approach by

combining GNN-based neural processing with symbolic reasoning to tackle link prediction and

time interval prediction in temporal knowledge graphs (TKGs). NeuSTIP employs temporal

logic rules, extracted via “all-walks” on TKGs, to enforce consistency and strengthen rea-

soning. By embedding symbolic reasoning subroutines into the neural framework, NeuSTIP
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demonstrates how such models can effectively derive structured insights and perform reason-

ing under constraints. Complementarily, Ma et al.’s Neural Symbolic Reinforcement Learning

(NSRL) framework [77] encodes states and policies in first-order logic and uses a differentiable

reasoning module to learn symbolic rules, illustrating a nested variant in which a predomi-

nantly symbolic RL agent incorporates a neural subcomponent for rule learning and multi-step

reasoning.

4.2.3 The Cooperative Paradigm: Iterative Interaction Between Neural and

Symbolic Modules

Rather than generic GANs, cooperative training schemes inspired by the GAN setting can

instantiate the cooperative paradigm when at least one of the components is explicitly tied

to symbolic rules or logic-based constraints. In such configurations, a neural generator pro-

poses candidate solutions while a symbolic or rule-based critic evaluates them against formal

constraints or domain knowledge, providing structured feedback that guides the generator.

The resulting iterative feedback loop between neural generation and symbolic evaluation fits

the Neuro | Symbolic framework, as it combines adaptive learning with constraint-driven

refinement.

Continuous learning is inherently facilitated in this cooperative paradigm, in which both

neural and symbolic modules undergo iterative refinement to enhance their performance over

time. In this paradigm, NN continuously updates its internal representations and model pa-

rameters in response to feedback derived from the symbolic module’s logical inferences and

constraint evaluations. This adaptive process enables the NN to generalize more effectively

across diverse and evolving data distributions. Simultaneously, the symbolic module is not

static; it dynamically revises its rule-based reasoning mechanisms and knowledge structures

by integrating new information extracted from the NN’s learned representations. An exam-

ple of this approach in reinforcement learning is the detect-understand-act (DUA) framework

[78], where neural and symbolic components collaborate iteratively to solve tasks in a struc-
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tured manner. In DUA, the detect module uses a traditional computer vision object detector

and tracker to process unstructured environmental data into symbolic representations. The

understand component, which integrates symbolic reasoning, processes this data using an-

swer set programming (ASP) and inductive logic programming (ILP), ensuring that decisions

align with symbolic rules and constraints. The act component, composed of pre-trained re-

inforcement learning policies, acts as a feedback loop to refine the symbolic representations,

allowing the system to converge on solutions that meet predefined criteria.

4.2.4 The Compiled Paradigm: Embedding Symbolic Reasoning Within Neural

Computation

Approaches such as model distillation, fine-tuning, pre-training, and transfer learning are not

neuro-symbolic methods by themselves. However, they can align with the NeuroSymbolic ap-

proach when symbolic constraints or objectives (e.g., logical consistency, relational structures)

are explicitly integrated into the neural training process—either through the loss function or

via neuron-level mechanisms (e.g., constrained activations). In such settings, the symbolic

component is effectively compiled into the neural model during training, enabling the re-

sulting network to adhere to predefined rules and support structured forms of reasoning.

Parametric activation functions that implement fuzzy or logic-like operators provide one ex-

ample of neuron-level compilation: as surveyed by Pusztaházi et al. [79], certain neuro-fuzzy

activations can be interpreted as learnable AND/OR operators, embedding symbolic structure

directly into the activation behaviour of neurons while remaining differentiable. Thus, these

techniques become part of the compiled paradigm only when they explicitly transfer or enforce

symbolic knowledge within the neural architecture. Mendez-Lucero and al. [80] exemplify this

perspective by embedding logical constraints directly into the loss function. Their distribu-

tion-based method incorporates symbolic logic, such as propositional formulas and first-order

logic, into the learning process. These constraints are encoded as a distribution and incor-

porated into the optimization procedure using measures such as the Fisher–Rao distance or
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Kullback–Leibler divergence, guiding the neural network to satisfy symbolic requirements. A

related line of work is the Semantic Loss framework of Arrotta et al. [81], which introduces

a logic-based loss term for context-aware human activity recognition; the loss penalizes pre-

dictions that violate symbolic constraints expressing activity patterns, thereby steering the

network towards solutions that are both accurate and consistent with domain knowledge.

Such integrations ensure that the model learns from data while simultaneously inheriting

explicit logical structure, thereby strengthening the connection between neural learning and

symbolic reasoning and making the approach suitable for use within regimes such as knowl-

edge distillation, fine-tuning, pre-training, and transfer learning.

Rather than generic data augmentation, we focus here on rule-constrained synthetic data

generation, which leverages the Neuro:Symbolic → Neuro approach. In this setting, symbolic

reasoning is used to generate logically valid synthetic examples that augment the training

corpus of neural models. By producing high-quality labeled data through logical inference,

symbolic solvers effectively compile structured knowledge into the data distribution, which

is then absorbed by the neural network during training. This method seamlessly integrates

the precision and structure of symbolic logic with the scalability and adaptability of NNs,

resulting in more robust and efficient learning. Li et al. [82] proposed a methodological

framework that exemplifies this approach. Their framework systematically generates labeled

data pairs (x, y), where y is derived from x through symbolic transformations based on for-

mal logical rules. The process begins with the formalization of mathematical problems in a

symbolic space using mathematical solvers, ensuring the logical validity of the generated in-

stances. Subsequently, mutation mechanisms are applied to diversify the examples, including

simplification strategies (reducing the complexity of expressions) and complication strategies

(adding constraints or variables to increase difficulty). Each transformation results in a new

problem–solution instance with its corresponding solution, forming labeled pairs (x′, y′) that

enrich the training corpus with controlled complexity levels and logically grounded synthetic

data. In a complementary vein, Llugiqi et al. [83] use knowledge graphs as a symbolic back-
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bone to perform semantic data augmentation for tabular prediction tasks: symbolic relations

in the graph are first exploited to derive enriched semantic descriptors (e.g., graph-based

embeddings and distance features), which are then used to train purely neural predictors.

4.2.5 The Fibring Paradigm: Connecting Neural Models Through Symbolic

Constraints

Multi-agent AI align with this paradigm by leveraging symbolic functions to facilitate commu-

nication and coordination between agents (i.e., neural models). Symbolic reasoning mediates

interactions, enforces constraints, and ensures alignment with predefined rules, while neu-

ral components adapt and learn from collective behaviors. This interplay enables robust and

scalable problem-solving in complex, multi-agent environments. Belle et al. [84] explored how

the combination of symbolic reasoning and agents can enable the development of advanced

systems that are closer to human-like intelligence. They discusses how symbolic reasoning

can mediate communication between agents, ensuring that they adhere to predefined rules

while allowing the neural components to learn and adapt from collective behaviors. This di-

rectly aligns with the fibring paradigm, where multiple NNs are interconnected via a symbolic

fibring function, enabling them to collaborate and share information in a structured manner.

MoE models are neural architectures in which multiple specialized subnetworks (“ex-

perts”) are trained jointly, and a learned gating/router network dynamically selects a small

subset of experts for each input, enabling conditional computation and scalable capacity

(i.e., large parameter counts with limited active compute). In modern LLMs such as Mix-

tral 8×7B, each Transformer layer contains several feed-forward experts, and a purely neural

router chooses (e.g., top-2) experts per token and combines their outputs, without any explicit

symbolic mediator or rule-based coordination layer [85]. DeepSeek-R1 builds on a large MoE

base model and improves reasoning via reinforcement learning, but the interaction among

experts remains governed by learned neural routing rather than formal symbolic constraints

[86]. Therefore, standard MoE systems are not neuro-symbolic by default; they can only
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be interpreted as instantiations of a fibring-like neuro-symbolic paradigm in variants where

expert routing or aggregation is explicitly controlled or constrained by symbolic rules, logical

constraints, or knowledge-based controllers [87].

5 Evaluation of NSAI Architectures

Ensuring the reliability and practical applicability of NSAI architectures requires a system-

atic evaluation across multiple well-defined criteria. Such an evaluation not only identifies the

strengths and limitations of the architectures but also fosters trust among stakeholders by em-

phasizing interpretability, transparency, and robustness—qualities essential in domains such

as healthcare, finance, and autonomous systems. Moreover, a rigorous assessment provides

benchmarks that can stimulate the development of next-generation models. The following

sections delineate the key criteria for evaluating NSAI architectures.

5.1 Core Criteria

The evaluation framework for NSAI architectures is built upon several fundamental criteria:

generalization, scalability, data efficiency, reasoning, robustness, transferability, and inter-

pretability. Each criterion is elaborated below.

Generalization: Generalization is defined as the capability of a model to extend its learned

representations beyond the training dataset to perform effectively in novel or unforeseen

situations. This criterion is evaluated based on:

– Out-of-distribution (OOD) performance [88] : The ability to maintain performance on

data that deviate from the training distribution.

– Contextual flexibility [89] : The capacity to adapt seamlessly to changes in context or

domain with minimal retraining.
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– Relational accuracy [90] : The capacity to identify and exploit relevant relationships in

data while mitigating the influence of spurious correlations.

Scalability: Scalability assesses the performance of NSAI architecture under increasing data

volumes or computational demands. A scalable system should remain efficient and effective

as it scales. Key aspects include:

– Large-scale adaptation [91] : The ability to process and derive insights from massive

datasets.

– Hardware efficiency [92] : Optimal utilization of available computational resources, en-

abling operation on both low-resource devices and high-performance infrastructures.

– Complexity management [93] : The ability to accommodate increased architectural com-

plexity without compromising speed or deployment feasability.

Data Efficiency: Data efficiency measures how effectively an NSAI model learns from lim-

ited data, an important consideration in scenarios where labeled data are scarce or expensive

to obtain. This criterion encompasses:

– Data reduction [94] : Achieving high performance with a reduced amount of training

data.

– Data optimization [95] : Maximizing the utility of available data (both labeled and

unlabeled), potentially through semi-supervised learning techniques.

– Incremental adaptability [96] : The capacity to incorporate new data progressively with-

out undergoing complete retraining.

Reasoning: Reasoning reflects the model’s ability to analyze data, extract insights, and draw

logical conclusions. This criterion underscores the unique advantage of NSAI architectures,

which combine neural learning with symbolic reasoning. This criterion evaluates:
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– Logical reasoning [97] : The systematic application of explicit rules to derive precise and

consistent inferences.

– Relational understanding [98] : The comprehension of complex relationships between

entities within the data.

– Cognitive versatility [99] : The integration of various reasoning paradigms (e.g., deduc-

tive, inductive, and abductive reasoning) to tackle diverse challenges.

Robustness: Robustness measures the system’s reliability and resilience to disruptions,

including noisy data, adversarial inputs, or dynamic environments. The evaluation considers:

– Resilience to perturbations/anomalies [100] : The ability to sustain stable performance

despite the presence of noise or adversarial data.

– Adaptive resilience [101] : The maintenance of functionality under changing or unpre-

dictable conditions.

– Bias resilience [102] : The effectiveness in detecting and correcting biases to ensure

fairness and accuracy in predictions.

Transferability: Transferability assesses the model’s ability in applying learned knowledge

to new contexts, domains, or tasks. This is essential for reducing the effort and time required

for model adaptation. Its evaluation involves:

– Multi-domain adaptation [103] : The capacity to generalize across diverse domains with

minimal modifications.

– Multi-task learning [104] : The capability to handle multiple tasks simultaneously through

shared knowledge representations.

– Personalization [105] : The adaptability of the model to meet specific user or application

requirements with limited additional effort.
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Interpretability: Interpretability evaluates the model’s ability to explain its decisions, en-

suring transparency and trust in NSAI systems. This criterion assesses:

– Transparency [106] : The clarity with which the internal mechanisms and decision pro-

cesses of the model are revealed.

– Explanation [107] : The ability to provide comprehensible justifications for predictions

or decisions.

– Traceability [108] : The capability to reconstruct the sequence of operations and factors

that contributed to a given outcome.

By systematically addressing these criteria, researchers and practitioners can ensure that

NSAI architectures are not only scientifically rigorous but also practical, adaptable, and

ready for real-world applications. This evaluation framework not only facilitates continuous

improvement and innovation but also supports the broad adoption of NSAI systems across

various industries and application domains.

5.2 Evaluation Methodology

The evaluation of NSAI architectures was conducted using a systematic approach to ensure a

robust and transparent assessment of their performance across multiple criteria. This process

relied on three key sources: scientific literature, empirical findings, and an analysis of the

design principles underlying each architecture. Table 1 summarizes the relevant research

works associated with the identified NSAI architectures in Section 3. The scientific literature

served as the primary source of qualitative insights, offering detailed analyses of the strengths

and limitations of various architectures. Foundational research and state-of-the-art studies

provided evidence of performance in areas such as scalability, reasoning, and interpretability,

helping to guide the evaluation. Additionally, empirical results from experimental studies and

benchmarks offered quantitative data, enabling objective comparisons across architectures.

Metrics such as accuracy, adaptability, and efficiency were particularly valuable in validating
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the claims made in research papers. The design principles of each technology were also

considered to understand how neural and symbolic components were integrated. This analysis

provided insights into the inherent capabilities and constraints of each architecture, such as its

suitability for handling complex reasoning tasks, scalability to large datasets, or adaptability

to dynamic environments.

For each main criterion, architectures are rated on a four-point scale according to how

many of its three sub-criteria using binary (yes/no) judgements grounded in the above

methodology. If all three sub-criteria are met, the rating is High, reflecting consistently ex-

ceptional performance; if two are met, the rating is Medium, indicating generally satisfactory

results with some limitations; if only one sub-criterion is met, the rating is Low–Medium,

denoting limited strengths; and if none are met, the rating is Low, signifying significant

weaknesses or inconsistent outcomes. In this way, each architecture receives a quantitative

score ranging from 0 to 3, ensuring a balanced and evidence-based evaluation.

By combining insights from literature, empirical findings, and design analysis, this method-

ology ensures a balanced and evidence-based evaluation. It provides a clear understanding

of the strengths and weaknesses of each architecture, enabling meaningful comparisons and

guiding future advancements in NSAI research and applications.

Table 1: Set of relevant published NSAI architectures considered in the proposed study.

Architecture References
Symbolic → Neuro → Symbolic [109], [110], [111], [112], [113], [114], [115], [116], [117],

[118], [119], [120], [121], [122], [123], [124], [125], [126],
[127], [128], [129], [130], [131], [132], [133]

Neuro[Symbolic] [43], [44]
Symbolic[Neuro] [41], [134], [135], [136], [137], [138]
Neuro | Symbolic [45], [139], [140], [141], [142], [143], [144]
Neuro → Symbolic ← Neuro [145], [47], [84], [86], [85], [23], [24], [25], [26]
Neuro:Symbolic → Neuro [37], [146], [147], [148], [149], [150], [151], [152], [153],

[154], [155], [156], [157], [158], [159], [160]
NeuroSymbolicLoss [161], [162], [163], [164], [165], [166]
NeuroSymbolicNeuro

[167], [168]
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5.3 Results and Discussion

Tables 2–3–4 provide the resulted qualitative evaluation of NSAI paradigms: each table re-

ports, for every main criterion, the satisfaction of its three sub-criteria (yes/no) for the corre-

sponding architectures, and a summary level (High/Medium/Low) derived directly from the

number of satisfied sub-criteria, so that Sequential/Fibring/Cooperative (Table 2), Nested

(Table 3), and Compiled paradigms (Table 4) can be compared consistently in terms of

strengths and limitations. Taken together, these results reveal complementary profiles rather

than a single universally optimal design. Sequential architecture performs strongly on rea-

soning, interpretability, and transferability, but only reach medium levels in scalability and

robustness. Cooperative architecture provides rich iterative reasoning and good interpretabil-

ity, but their scores on scalability and robustness remain lower, limiting their applicability

in large-scale settings. Within the Nested family, Symbolic[Neuro] models excel in data ef-

ficiency, reasoning, and interpretability but struggle with large-scale adaptation, whereas

Neuro[Symbolic] variants improve generalization and robustness by embedding symbolic mod-

ules inside neural pipelines, while sacrificing some versatility and transferability. Finally, Com-

piled architectures show that embedding symbolic knowledge directly into losses or neuron-

level mechanisms yields strong reasoning and interpretability, but their generalization and

multi-domain transfer capabilities are generally more modest. Overall, the Neuro → Sym-

bolic ← Neuro architecture emerges as the best-performing model, consistently achieving

high ratings across all criteria. Its exceptional performance in generalization, scalability, and

interpretability makes it highly suitable for real-world applications that demand reliability,

adaptability, and transparency. While other architectures also perform well in specific areas,

the versatility and robustness of Neuro→ Symbolic← Neuro set it apart as the most balanced

and capable solution. This conclusion aligns with findings in the state of the art, which high-

light the effectiveness of Neuro → Symbolic ← Neuro architectures in leveraging advanced

AI technologies, such as multi-agent systems. Multi-agent systems are well-documented for

their robustness, particularly in dynamic and distributed environments, where their ability to

32



coordinate, adapt, and reason collectively enables superior performance. For instance, Subra-

manian et al. [169] demonstrated that incorporating neuro-symbolic approaches into multi-

agent RL enhances both interpretability and probabilistic decision-making. This makes such

systems highly robust in environments with partial observability or uncertainties. Similarly,

Keren et al. [170] highlighted that collaboration among agents in multi-agent frameworks

promotes group resilience, enabling these systems to adapt effectively to dynamic or adver-

sarial conditions. These attributes are particularly valuable in Neuro → Symbolic ← Neuro

architectures, as they address the critical need for transparency and robustness in complex

real-world applications.

6 Neuro-Symbolic AI Architectures for 4D Printing:

Proposed Applications

4D printing is an advanced manufacturing paradigm that integrates additive manufacturing

(AM) with smart materials (SMs) capable of changing their shape, properties, or functional-

ity over time when exposed to external stimuli such as heat, light, pH, magnetic or electric

fields, or humidity [175, 176]. At the core of this technology lie stimuli-responsive materials

such as shape memory polymers (SMPs), hydrogels, liquid crystal elastomers (LCEs), elec-

troactive polymers (EAPs), and shape memory alloys (SMAs), which enable the autonomous

transformation of structures without mechanical intervention [177, 178, 179, 180]. These ma-

terials can be processed using AM techniques such as fused filament fabrication (FFF), direct

ink writing (DIW), digital light processing (DLP), and powder bed fusion (PBF), enabling

the fabrication of functional and adaptive geometries for applications in biomedicine, soft

robotics, aerospace, textiles, and structural monitoring [181, 182, 183, 184, 185].

In recent years, artificial NNs have been explored in the 4D printing domain to tackle

challenges such as predicting material response under stimuli, learning complex shape evolu-
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Table 2: Comparison of NSAI architectures (Part 1): Sequentiel, Fibring, and Cooperative

Main Criterion Sub-Criterion Symbolic Neuro Symbolic Neuro → Symbolic ← Neuro Neuro|Symbolic

Generalization

Out-of-dist. yes [131] yes [84] yes [139]

Continuous flex. yes [109] yes [86] yes [143]

Relative prec. yes [125] yes [47] no

Summary High High Medium

Scalability

Large-scale adapt. yes [114] yes [26] yes [141]

Hardware efficiency no yes [85] no

Complexity yes [122] yes [24] no

Summary Medium High Low–Medium

Data Efficiency

Reduction no yes [25] yes [45]

Optimization yes [130] yes [145] yes [141]

Incremental adapt. yes [123] yes [23] no

Summary Medium High Medium

Reasoning

Logical reason. yes [127] yes [86] yes [140]

Comprehension yes [128] yes [24] yes [144]

Versatility yes [118] yes [47] yes [142]

Summary High High High

Robustness

Perturbations no yes [86] yes [141]

Adaptability yes [123] yes [25] yes [45]

Bias handling no yes [23] no

Summary Low–Medium High Medium

Transferability

Multi-domain yes [110] yes [24] yes [143]

Multi-task yes [124] yes [85] no

Personalization yes [116] yes [23] no

Summary High High Low–Medium

Interpretability

Transparency yes [117] yes [84] yes [143]

Explanation yes [121] yes [47] yes [142]

Traceability yes [133] yes [145] yes [140]

Summary High High High
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Table 3: Comparison of NSAI architectures (Part 2): Nested

Main Criterion Sub-Criterion Symbolic[Neuro] Neuro[Symbolic]

Generalization

Out-of-dist. no yes [44]

Continuous flex. yes [134] no

Relative prec. yes [138] no

Summary Medium Low–Medium

Scalability

Large-scale adapt. no yes [43]

Hardware efficiency no no

Complexity no no

Summary Low Low–Medium

Data Efficiency

Reduction yes [135] yes [44]

Optimization yes [136] yes [44]

Incremental adapt. yes [41] no

Summary High Medium

Reasoning

Logical reason. yes [134] yes [43]

Comprehension yes [137] no

Versatility yes [138] no

Summary High Low–Medium

Robustness

Perturbations yes [41] yes [44]

Adaptability yes [137] no

Bias handling no no

Summary Medium Low–Medium

Transferability

Multi-domain yes [137] no

Multi-task no no

Personalization no no

Summary Low–Medium Low

Interpretability

Transparency yes [134] yes [44]

Explanation yes [135] yes [43]

Traceability yes [138] yes [44]

Summary High High
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Table 4: Comparison of NSAI architectures (Part 3): Compiled

Main Criterion Sub-Criterion Neuro:Symbolic → Neuro NeuroSymbolicLoss
NeuroSymbolicNeuro

Generalization

Out-of-dist. yes [160] no no

Continuous flex. no no no

Relative prec. no no no

Summary Low–Medium Low Low

Scalability

Large-scale adapt. yes [155] yes [166] yes [168]

Hardware efficiency yes [37] yes [161] yes [171]

Complexity no no no

Summary Medium Medium Medium

Data Efficiency

Reduction no yes [162] yes [167]

Optimization yes [149] yes [164] yes [172]

Incremental adapt. no no no

Summary Low–Medium Medium Medium

Reasoning

Logical reason. yes [152] yes [161] yes [167]

Comprehension yes [157] yes [163] yes [168]

Versatility yes [151] no no

Summary High Medium Medium

Robustness

Perturbations yes [147] no yes [173]

Adaptability yes [154] no no

Bias handling yes [159] no yes [174]

Summary High Low Medium

Transferability

Multi-domain no no no

Multi-task no yes [166] yes [167]

Personalization no no no

Summary Low Low–Medium Low–Medium

Interpretability

Transparency yes [148] yes [165] yes [168]

Explanation yes [158] yes [166] yes [167]

Traceability yes [146] yes [163] yes [168]

Summary High High High
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tion dynamics, and supporting the inverse design of shape-changing structures [186, 187, 188,

189, 162, 190, 191, 192]. However, despite their effectiveness in pattern recognition and data-

driven modeling, NN approaches face key limitations when applied to 4D printing. First, they

often require large, high-quality datasets to achieve meaningful generalization, which is prob-

lematic in emerging fields where experimental data are sparse or costly to obtain [6]. Second,

the black-box nature of NNs hinders the interpretability of results, limiting their adoption

in safety-critical design contexts such as biomedical or aerospace applications. Third, NNs

typically struggle with tasks that demand reasoning over structured knowledge, including the

symbolic relationships between materials, geometries, and functional outcomes. These short-

comings impede the development of explainable and trustworthy design workflows, especially

when targeting multifunctional or multi-material 4D-printed systems.

The integration of NSAI with 4D printing technology presents unprecedented opportuni-

ties to address the complex challenges inherent in designing, optimizing, and manufacturing

stimuli-responsive structures. By combining the learning capabilities of NNs with the logical

reasoning and interpretability of symbolic AI, researchers can develop robust frameworks that

address the multidisciplinary demands of 4D printing [36]. This section proposes specific ap-

plications of various NSAI architectures throughout the 4D printing workflow, from material

discovery to transformation control and structural optimization illustrated in Figure 7.

6.1 Sequential Architecture Applications

Sequential architecture (Symbolic→ Neuro→ Symbolic) offer promising applications in mate-

rial property mapping for 4D printing. By first encoding material compositions and structural

parameters into symbolic representations, then processing these through NNs, and finally

decoding outputs back into interpretable symbolic form, researchers can establish explicit

relationships between formulations and transformation behaviors. A sequential NSAI system

for the design of shape memory polymers (SMPs), liquid crystal elastomers (LCEs), and
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Figure 7: Overview of NSAI in accelerated design for 4D printing with regard to AM, people
involved from various fields, artifacts, and applications [36] (Adapted with permission from
Elsevier).
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hydrogels would begin with symbolic representations of polymer composition, crosslinking

density, and thermal properties, encode these into continuous vectors for neural processing,

utilize neural networks to predict complex transformation patterns, and conclude by decoding

predictions into symbolic rules describing temperature-dependent folding angles and recovery

rates. This approach maintains scientific traceability while leveraging NNs’ capacity to model

complex structure-property relationships that are difficult to formulate using purely symbolic

methods. The resulting framework would facilitate rapid design iteration with interpretable

outputs that can guide experimental validation and material refinement.

6.2 Nested Architectures for Multi-scale Optimization

The nested Symbolic[Neuro] architecture presents significant advantages for rule-based de-

sign systems that incorporate neural material prediction. In this configuration, a symbolic

reasoning framework establishes design constraints based on application requirements, while

embedded NNs predict material distributions that achieve desired transformation properties.

For instance, an expert system for designing 4D-printed medical stents could utilize sym-

bolic reasoning to establish design constraints based on clinical requirements, employ NN

subcomponents to predict material distribution patterns that achieve desired transformation

properties, and evaluate neural predictions against clinical constraints to iteratively refine the

design. This architecture maintains interpretable decision logic while leveraging NNs’ pattern

recognition capabilities for complex material behavior prediction.

Conversely, the Neuro[Symbolic] architecture enables generative design capabilities by

embedding physical constraint solvers within neural frameworks. A design system for 4D-

printed adaptive structures could leverage a generative NN to propose innovative material

distributions, activate embedded symbolic solvers to verify physical feasibility when faced

with complex transformation sequences, and integrate results back into the neural framework

to guide subsequent design iterations. This approach would enable the exploration of novel

design spaces while ensuring physical feasibility, effectively reducing the gap between com-
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putational design and manufacturability that currently hampers innovation in 4D printing

applications.

6.3 Cooperative Architecture for Transformation Control

Cooperative NSAI architectures (Neuro | Symbolic) present compelling solutions for interac-

tive transformation planning systems in 4D printing. Through iterative refinement of pre-

dictions based on physical models, these systems enable precise control of complex trans-

formation sequences that are difficult to model using either purely data-driven or analytical

approaches. A cooperative system for designing multi-stage transformation sequences would

utilize NNs to process visual information of printed structures during initial transformation,

employ symbolic reasoning to evaluate transformation against desired geometric goals and

physical constraints, identify discrepancies between predicted and observed behavior, and

continue this feedback loop until achieving the desired transformation sequence. This ar-

chitecture is particularly suitable for applications requiring precise spatiotemporal control

of transformation, such as soft robotics and adaptive medical devices, where transformation

pathways are as critical as final configurations.

6.4 Compiled Architectures for Physics-Informed Design

The incorporation of physical laws directly into neural network architectures through compiled

approaches offers significant advantages for 4D printing applications. A physics-informed ma-

terial design system utilizing NeuroSymbolicLoss
functions would enable more physically accurate

prediction of material behavior by penalizing predictions that violate fundamental principles.

For instance, a design system for 4D-printed hydrogel structures could employ NNs to pre-

dict swelling behavior based on material composition while incorporating physics-based loss

terms that enforce conservation of mass, diffusion dynamics, and mechanical equilibrium con-

straints. This approach ensures that model predictions remain physically plausible even for

novel material combinations or environmental conditions, substantially reducing the need for
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extensive experimental validation that currently limits exploration of new material formula-

tions.

Similarly, constraint-aware material distribution optimization can be achieved through

NeuroSymbolicNeuro
architectures, where traditional activation functions are replaced with logic-

based elements that enforce manufacturing constraints. A voxel-based material distribution

optimizer with symbolic neurons would enforce printability rules like minimum feature size,

support requirements, and material interface limitations directly within the optimization pro-

cess, eliminating post-processing steps and streamlining the transition from computational

design to fabrication. This integration of manufacturing constraints at the neuron level rep-

resents a significant advancement over current approaches that typically separate design op-

timization from manufacturability verification.

The Neuro:Symbolic → Neuro approach addresses the critical challenge of limited exper-

imental data in 4D printing through supervised training with synthetic data generation. A

predictive model for LCEs behavior could utilize symbolic reasoning based on physical models

to generate a comprehensive dataset of material compositions and corresponding transforma-

tion behaviors. The resulting neural model would combine the physical accuracy of analytical

models with the computational efficiency of neural inference, enabling rapid exploration of

material design spaces that would be prohibitively expensive to characterize experimentally.

6.5 Fibring Architecture for Multi-domain Optimization

The fibring architecture offers powerful capabilities for multi-scale material and structure

optimization in 4D printing by connecting specialized neural networks through symbolic re-

lationships. A comprehensive design system utilizing this approach would deploy specialized

NNs for different aspects of the problem (molecular-scale material properties, meso-scale

structural behavior, and macro-scale system performance), connect these networks through

symbolic fibring functions that ensure consistency across scales, and resolve contradictions

between predictions at different scales through the symbolic component. This architecture
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addresses the fundamental multi-scale challenge in 4D printing, where molecular-level inter-

actions ultimately determine system-level performance, but direct modeling across all scales

remains computationally intractable. By decomposing the problem into specialized networks

while maintaining consistency through symbolic relationships, researchers can achieve simul-

taneous optimization of material composition and structural configuration.

The proposed applications of NSAI architectures in 4D printing demonstrate the potential

for significant advancements throughout the material-design-manufacturing workflow. Each

architecture addresses specific challenges inherent in 4D printing: sequential architectures

provide interpretable material-property relationships; nested architectures balance creativity

with physical constraints; cooperative architectures enable precise transformation control;

compiled architectures integrate physical laws and manufacturing constraints; and fibring

architectures connect predictions across multiple scales and domains. By systematically ap-

plying these approaches, researchers can accelerate innovation while maintaining scientific

interpretability, potentially reducing the current gap between fundamental research and prac-

tical applications in 4D printing technology.

7 Conclusion

This study evaluates several NSAI architectures against a comprehensive set of criteria, in-

cluding generalization, scalability, data efficiency, reasoning, robustness, transferability, and

interpretability. The results highlight the strengths and weaknesses of each architecture,

offering valuable insights into their capabilities for real-world applications. Among the archi-

tectures investigated, Neuro → Symbolic ← Neuro emerges as the most balanced and robust

solution. It consistently demonstrates superior performance across multiple criteria, excelling

in generalization, scalability, and interpretability. These results align with recent advance-

ments in the field, which emphasize the role of multi-agent systems in enhancing robustness

and adaptability. As shown in recent studies, multi-agent frameworks, when integrated with
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neuro-symbolic methods, provide significant advantages in handling uncertainty, fostering

collaboration, and maintaining resilience in dynamic environments. This integration not only

enables better decision-making but also ensures transparency and traceability, which are crit-

ical for sensitive applications. Moreover, its ability to leverage advanced AI technologies,

such as multi-agent systems, positions Neuro → Symbolic ← Neuro as a leading candidate

for addressing the demands of generative AI applications.

Future work will be focused on exploring the scalability of this architecture in even larger

and more diverse environments. Additionally, advancing the integration of symbolic reasoning

within multi-agent systems may further enhance their robustness and cognitive versatility.

As the field evolves, Neuro → Symbolic ← Neuro architectures are likely to remain at the

forefront of innovation, offering practical and scientifically grounded solutions to the most

pressing challenges in AI.
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