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Abstract

Gestalt principles, established in the 1920s, describe how humans perceive individual
elements as cohesive wholes. These principles, including proximity, similarity,
closure, continuity, and symmetry, etc., play a fundamental role in human perception,
enabling structured visual interpretation. Despite their significance, existing Al
benchmarks fail to assess models’ ability to infer patterns at the group level,
where multiple objects following the same Gestalt principle are considered as a
group using these principles. To address this gap, we introduce Gestalt Vision, a
framework designed to evaluate Al models’ ability to not only identify groups within
patterns but also reason about the underlying logical rules governing these patterns.
Gestalt Vision provides structured visual tasks and baseline evaluations spanning
neural and neural-symbolic approaches, uncovering key limitations in current models’
ability to perform human-like visual cognition. Our findings emphasize the necessity
of incorporating richer perceptual mechanisms into Al reasoning frameworks. By
bridging the gap between human perception and computational models, Gestalt
Vision offers a crucial step toward developing Al systems with improved perceptual
organization and visual reasoning capabilities.
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Introduction

Gestalt principles such as proximity, similarity, closure, symmetry, and continuity
describe the innate ways in which human perception organizes visual information into
coherent wholes (Wertheimer 1938; Koffka 1935; Ellis 1999; Palmer 1999). These
principles allow humans to instinctively identify salient features and abstract high-level
concepts from complex scenes. For example, we instinctively perceive symmetrical
arrangements as unified structures and tend to complete incomplete shapes through
closure, enabling rapid recognition of objects and their interrelationships (see Fig. 1).
This perceptual strategy is particularly relevant in complex visual reasoning tasks, where
it is important to move beyond the focus on individual pixels or discrete objects to discern
overarching patterns and structures. Incorporating Gestalt principles enables visual
reasoning models to better emulate human perception, improving object relationships
and high-level reasoning.

Neuro symbolic systems typically combine deep learning models such as Mask R-
CNN (He et al. 2017) or Slot Attention (Locatello et al. 2020) to detect objects and assign
symbolic labels and bounding boxes (Shindo et al. 2023; Sha et al. 2024; Shindo et al.
2024). These symbolic abstractions then serve as the input to reasoning modules that
operate over object-level representations. However, such pipelines often overlook crucial
attributes including contours, size, color, and spatial distribution that are essential for
context-sensitive inference. As a result, existing reasoning models may fail to capture
nuanced information required for complex relational or group-level understanding.
Addressing this limitation requires benchmarks that preserve both local and global visual
features while testing models under systematic and controlled conditions.

To move toward this goal, we introduce the Gestalt Vision Benchmark (ELVIS),
a synthetic dataset designed to evaluate models on perception and reasoning guided
by Gestalt principles. Each task in ELVIS is constructed to emphasize one or more
principles, with structured visual scenes and rule-based labels. Unlike conventional visual
benchmarks, ELVIS focuses explicitly on group-level regularities in addition to isolated
object features.

We develop a systematic task generation framework that jointly considers object-level
properties such as color, shape, size, and position, group-level properties such as group
shape and color distributions, and combinations across different principles. This enables
the construction of thousands of diverse tasks per principle, ensuring statistically robust
evaluation while exposing more subtle reasoning challenges. We also evaluate several
baseline models on the benchmark, including the recent GPT-5 (OpenAl 2025).

Overall, this work makes the following contributions:

1. We introduce the Gestalt Vision Benchmark (ELVIS)*, a large scale dataset that
systematically covers object level and group level properties, as well as their
combinations across multiple Gestalt principles.

*https://github.com/ml-research/ELVIS
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2. We design the number of tasks per principle up-to thousands, offering broader
coverage and improved statistical reliability for evaluation.

3. We evaluate and analyze multiple baseline models on the dataset, highlighting both
the progress and limitations of current approaches in capturing perceptual grouping
and reasoning.

4. We release the dataset and code to serve as a comprehensive resource for advancing
research on visual reasoning and grouping related research community.

To this end, we proceed as follows. We start off with reviewing related work and then
introduce our Gesalt Vision (ELVIS) benchmark. Before concluding, we will present the
results of our evaluation using ELVIS.

Related Work

We will now review the relevant literature focusing on two major subareas, namely visual
perception and neuro-symbolic reasoning.

Gestalt Principles and Computer Vision

Gestalt principles have a long and rich history in psychology, tracing back to seminal
works by Wertheimer, Koffka, and Palmer (Wertheimer 1938; Koffka 1935; Palmer 1999;
Ellis 1999). In recent decades, these foundational ideas have influenced a variety of
computational models in machine learning and computer vision (Lorincz et al. 2017;
Hua and Kunda 2020; Kim et al. 2021; Zhang et al. 2024), often aiming to replicate or
approximate the human capacity for grouping and structural organization.

However, the majority of prior work has relied on convolutional networks or other
purely neural techniques, which primarily capture local feature correlations but struggle
with higher-order grouping. Explicit integration of Gestalt principles into computational
systems remains relatively rare, and even fewer approaches combine neural perception
with symbolic representations to preserve holistic grouping and reasoning capabilities.
This motivates the development of benchmarks such as ELVIS, which provide systematic
tasks for evaluating how well models capture Gestalt-based organization beyond object-
level detection.

Neuro-symbolic Learning and Reasoning

Neuro-symbolic approaches have emerged as a prominent paradigm that combines
the perception strengths of neural networks with the interpretability and systematic
generalization of symbolic reasoning. Over the past years, a variety of benchmarks have
been introduced to evaluate such hybrid systems. Notable examples include CLEVR
(Johnson et al. 2017), CLEVRER (Yi et al. 2020), V-LoL (Helff et al. 2025) and visual
question answering frameworks that integrate ConceptNet and other knowledge graphs
(Yi et al. 2018; Mao et al. 2019; Amizadeh et al. 2020; Tan and Bansal 2019). These
resources have driven progress in compositional reasoning but predominantly focus on
object detection, attribute recognition, and relatively simple relational inference.
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Figure 1. Gestalt Principles Supported by ELVIS. From left to right: Proximity: Objects
that are spatially close to each other are perceived as a group. Similarity: Objects with
common attributes, such as shape or color, are grouped together. Continuity: Objects with
continue positions are grouped together. Feature Closure: Objects with aligned visual
features create an implicit, complete shape. Position Closure: Objects arranged in a manner
that suggests a closed contour are grouped. Symmetry: Objects mirrored across an axis are
perceived as a structure, each symmetric pair determines a group.

Meanwhile, several benchmarks have sought to test higher-level reasoning and
abstraction of the visual reasoning models by given only a small number of samples.
[Bongard problems (Ruchkin 1971) access the capacity to identify abstract rules that
distinguish two sets of visual patterns, providing a foundational testbed for conceptual
and relational reasoning. (REVISED)] Abstract Visual Reasoning (AVR) tasks assess how
well models generalize concepts in abstract settings, requiring compositional reasoning
and transfer (Hu et al. 2021). CLEVRER explicitly introduces causal and physics-
based reasoning with interacting objects (Yi et al. 2020). The Kandinsky Patterns
benchmark (Miiller and Holzinger 2021) and its three-dimensional extension (Sha et al.
2024) provide structured synthetic data to study relational abstraction and perceptual
grouping. Additionally, the Alphabet Shape dataset (Sha et al. 2024) explores recognition
of alphanumeric shapes constructed from grouped objects, highlighting grouping as a
fundamental principle of cognition (Sellars 1912).

Despite these advances, most existing benchmarks do not systematically address
grouping phenomena grounded in perceptual psychology. Our work extends this line
of research by explicitly incorporating Gestalt principles such as proximity, similarity,
closure, symmetry, and continuity in CLEVR to generate a new benchmark. The Gestalt
Vision Benchmark (ELVIS) evaluates the ability of neuro-symbolic models to detect and
reason over grouping-based structures, moving beyond object-level perception toward
more holistic and human-aligned reasoning. In the extended version presented here,
we broaden the task generation process to systematically include both object-level and
group-level properties, as well as combinations across principles. This creates a richer
and more comprehensive testbed for measuring the capabilities and limitations of neuro-
symbolic reasoning in visual abstraction.

Gestalt Vision (ELVIS): A Gestalt Reasoning Benchmark

Gesalt Vision (ELVIS) is a curated collection of synthetic visual scenes that emphasize
five key Gestalt principles: Proximity, Similarity, Closure, Continuity, and Symmetry,
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Table 1. Benchmark tasks summarization. The table summarizes the benchmark tasks for
each Gestalt principle. Columns report the number of categories, number of tasks, object
number range, average number of objects, group number range, and object size range. All
principles share a common pool of 150 colors and 12 shapes.

Principle |# Cat. # Task # Obj. Range # Avg. Obj. # G. Size Range

Proximity 4 588 3-90 22 2-4 5% ~ 80%
Similarity 3 872 4-196 58 1-4 2% ~ 10%
Closure 6 596 3-60 19 1-4 3% ~ 12%
Continuity | 4 432 4-68 24 1-4 3%~ 8%
Symmetry 3 900 3-49 20 2-7 5% ~ 40%

as illustrated in Figure 1. These principles are essential for understanding how discrete
visual elements are perceived as cohesive patterns. It is an important challenge for
visual reasoning models that integrate learned perceptual features with logical reasoning
mechanisms.

Overview of ELVIS

ELVIS provides a systematic collection of synthetic visual tasks that highlight how
Gestalt principles shape perceptual grouping and reasoning. Each task is generated from
scenes composed of objects defined by core attributes such as color, shape, size, position,
and quantity. These object-level properties interact with group-level features including
collective arrangements, symmetry axes, shared color distributions, or composite group
shapes.

This design moves beyond simple object recognition toward reasoning about high-
level organization. Models are expected not only to identify which objects are present
but also to infer how these objects form structured patterns under Gestalt constraints.
For example, elements that appear close to each other can be grouped by proximity,
partially occluded figures can be completed through closure, and objects aligned around
a symmetry axis can be perceived as a unified whole.

Table 1 shows the summarization of the tasks in the benchmark. With thousands
of tasks spanning diverse principles and property combinations, ELVIS ensures broad
coverage and statistically robust evaluation. The benchmark thus provides a challenging
yet principled environment for testing visual reasoning models, encouraging them to
capture the same perceptual strategies that humans naturally use when organizing visual
input into meaningful structures.

Data Generation

The ELVIS benchmark is generated under controlled conditions to systematically capture
a wide spectrum of Gestalt principles while ensuring reproducibility and clarity of
evaluation. Through these controlled yet diverse design choices, ELVIS challenges
computational models to perform context-sensitive reasoning. Rather than limiting
evaluation to low-level classification, the benchmark tests whether models can apply
logical rules to organize visual elements into coherent wholes, which is an ability central
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Figure 2. Geometric Feature Scenarios. Example patterns illustrating different geometric
feature scenarios. From left to right: individual objects, object overlap, group overlap, nested
shapes, and incomplete forms, designed to assess model perception under varied spatial
configurations.

to visual reasoning systems that aim to bridge pixel-level perception with symbolic-level
reasoning.

Diverse Objects. As shown in table 1. Scenes contain up to 12 variations of basic
shapes, with as many as 150 color variations and a size range spanning approximately
2% to 80% of the image width. This diversity provides rich input for perception and
reasoning, reducing the risk of bias and overfitting while improving robustness and
generalization across models.

Varied Complexity. The number of objects in a scene ranges from a handful in
simple settings to several hundred in complex ones. Regardless of density, each scene
is designed to clearly embody a target Gestalt principle. Objects that participate in the
same principle may still differ in shape, color, and size, ensuring that task difficulty arises
from heterogeneous attributes that models must jointly interpret .

Explicit Groupings. Object arrangements are deliberately constructed to make
grouping cues unambiguous. For example, proximity clusters are placed with
clear separation from other clusters, and symmetrical arrangements align precisely
around defined axes. This design minimizes confounding factors while ensuring that
comparisons across models remain reliable.

Features in the patterns

Although the patterns are composed of basic geometric shapes such as triangle, square,
etc. Their variations extend beyond simple shape detection. Figure 2 illustrates five
distinct scenarios designed to challenge the robustness of perception models: Individual,
the objects are placed individually without overlapping, which is the most straightforward
case; Object Overlap, the objects are overlapped with each other, which can cover part
of the features of some of the objects in the image; Group Overlap, multiple groups are
overlapped with each other, whereas the objects are still remaining individual. Inside,
the objects are completely inside another object; and Incomplete, the object is not
completely drawn in the image, which sometimes shows the features of other shapes.

These variations test the model’s ability to handle occlusion, containment, and missing
features, ensuring a deeper understanding of geometric properties.
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Figure 3. Category Base Patterns of ELVIS. Each category in ELVIS is based on a specific
Gestalt principle. The base pattern of each category serves as a foundational structure, which
can generate numerous variations by adjusting object properties.

Category

Although we provide hundreds of tasks for each Gestalt principle, we do not code
and design them individually. Instead, we introduce a base pattern called a category to
efficiently generate multiple tasks. Each category is explicitly designed around a specific
Gestalt principle. By modifying key attributes, such as the number of groups, the number
of objects within each group, and the color, shape, or size of each object, we can create
numerous variations while maintaining the same underlying principle. Figure 3 presents
examples of each category used in the ELVIS. Table 7 in Appendix presents the detailed
information for each category.
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Figure 4. Task Example of ELVIS. Left: Positive patterns illustrating the Gestalt principle of
closure, where objects collectively form a yellow-green triangle. Right: Negative patterns that
partially adhere to the rule but violate key constraints, either by not matching the required
color or by failing to complete the triangular closure.

Task Formulation

Each task in ELVIS is defined by a set of rules, which specify a combination of
logical conditions that determine the structure of valid visual patterns. These rules are
instantiated as constraints on object-level properties (e.g., shape, color, size, count)
and group-level configurations (e.g., spatial arrangement, symmetry). For example, a
rule might require that each group contains one red triangle, or several objects form a
symmetrical structure.

Using these rules, the dataset generation pipeline creates a set of positive images that
fully satisfy all constraints and a corresponding set of negative images, each of which
violates at least one constraint.

Each image is assigned a binary label: positive sample has label 1 and negative
example has label 0. A task is defined as the classification problem of distinguishing
these two types of images based on their compliance with the underlying rules. Figure 4
shows an example of a task.

In this setting, the rules capture the complete logical structure of the visual pattern,
the constraints represent the atomic predicates that compose the rules, the label indicates
whether an image satisfies all constraints, and the task refers to the binary classification
challenge associated with rules. Although some negative images may share superficial
similarities with positive ones, they are guaranteed to break at least one essential
constraint, making the task nontrivial and requiring more than low-level visual matching.

This formulation allows models to be evaluated in a focused and interpretable manner,
testing their ability to infer meaningful group-level properties from structured visual
mput.

Comparison with Existing Datasets

To clarify the position of ELVIS among existing visual reasoning benchmarks, Table 2
compares representative datasets along perceptual, structural, and reasoning dimensions.
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Dataset Synthetic Object-Centric Grouping-Centric Rule Induction
CLEVR v v X 4
PGM / RPM v X X v
Bongard-LOGO v X X v
ARC(-AGI) v X X v
ELVIS (ours) v v v v

Table 2. Comparison between ELVIS and representative visual reasoning datasets. ELVIS
uniquely supports explicit and controllable Gestalt-based perceptual grouping with group-level
annotations, enabling systematic analysis of perceptual organization in visual reasoning.

A cross (x) indicates that a capability is not explicitly evaluated or supervised by the
benchmark, even if it may be implicitly required for solving some tasks.

CLEVR (Johnson et al. 2017) is an object-centric dataset that supports relational
and rule-based reasoning over explicitly annotated objects. However, its reasoning
operates purely at the object level: perceptual grouping and Gestalt organization are
neither required nor evaluated. While CLEVR scenes can contain dozens of objects,
this scale remains substantially smaller than ELVIS, which supports scenes with up to
hundreds of objects and emphasizes group-level structure. PGM/RPM (Raven and Court
1998) focus on abstract rule induction over fixed structural slots rather than object-
centric representations. The spatial layout, primitives, and correspondence structure
are predefined by design, making perceptual organization and grouping unnecessary.
As a result, it evaluates symbolic pattern abstraction but does not test perceptual
grouping or Gestalt principles. Bongard-LOGO (Nie et al. 2020) evaluates high-level
concept learning from positive and negative examples and places strong demands on
visual perception, such as distinguishing curves, lines, and small geometric primitives.
Nevertheless, it does not explicitly model object-centric reasoning or perceptual
grouping; the task is framed at the level of global visual concepts rather than structured
object groups. ARC(-AGI) (Chollet et al. 2025) requires strong perceptual abilities to
identify relevant visual elements and to infer transformation rules across scenes. Many
ARC tasks implicitly rely on grouping. For example, treating multiple tiles as a coherent
part or applying a shared rule across subsets of elements. However, ARC does not
provide group-level supervision, nor does it explicitly evaluate grouping as a standalone
capability. Instead, it targets a broader notion of generalization and abstract reasoning
that goes beyond the focused scope of ELVIS.

In contrast, ELVIS is explicitly designed to study visual reasoning grounded in
perceptual organization. It provides controllable Gestalt-based grouping mechanisms,
group-level annotations, and systematic factor variations, enabling targeted evaluation
of how perceptual grouping supports downstream reasoning.

Empirical Evaluation using ELVIS

We now evaluate the ELVIS benchmark with some state-of-the-art neural and neuro-
symbolic methods to demonstrate the shortcoming(s) of current machine learning
models.
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Task Types and Evaluation Metrics

ELVIS comprises a diverse set of tasks designed to evaluate how effectively
computational models can identify and reason about Gestalt principles. Table 1
summarizes the task distribution. Each principle is associated with hundreds of tasks that
feature considerable variation in visual complexity, such as object count (ranging from
a few to several hundred), color diversity (hundreds of different colors), object shapes
(12 different shapes), and object sizes (varying between 2% and 80% of the width of
the image). These variations ensure that the benchmark tests a wide array of perceptual
scenarios.

[ We evaluate each model in a strictly task-wise manner. Each task is associated with
two disjoint splits: a training split and a test split. By default, each split contains three
positive and three negative examples. All models are given access to the same number
of training and testing examples, ensuring a controlled and fair comparison across model
families. (REVISED)]

[ For neural baselines such as ViT, we train a separate binary classifier for each task
using the labeled examples in the training split and evaluate it on the corresponding test
split. For vision—language and language models (LLaVA-OneVision, InternVL3, GPT-5),
tasks are evaluated independently using a lightweight supervised demonstration protocol.
Specifically, the model is provided with the training split examples together with a textual
description of the Gestalt principle instantiated by the task, and is then asked to predict
the labels of the six images in the test split. This evaluation protocol supplies minimal
task-local supervision while explicitly disallowing gradient-based adaptation and task-to-
task transfer. Model outputs are generated as free-form text and deterministically parsed
into binary labels. Full prompt templates and parsing rules are provided in Appendix .
(REVISED)]

[ Although the output format is binary, solving an ELVIS task requires identifying
the latent Gestalt relation that differentiates two sets of patterns—akin to classical
visual ILP problems, where simple labels mask rich underlying structure. We adopt
this minimal interface to ensure comparability across neural, symbolic, and foundation
models, while isolating the core challenge of forming the correct abstract grouping
concept. Performance is measured using accuracy and F1 score, and we report the mean
and standard deviation across all tasks in the benchmark. (REVISED)]

Baseline Models

We evaluated four representative baselines, encompassing neural and VLM approaches.
Table 3 summarizes the characteristics of the baseline models.

Vision Transformer (ViT-B/16) (Wu et al. 2020; Wightman 2019) is a purely neural
model pre-trained on ImageNet-21K and fine-tuned on ImageNet-1K, providing strong
visual perception capabilities at a resolution of 224 x 224 pixels. It is a transformer-based
vision model that represents an image as a sequence of patch tokens rather than using
convolutional features. Each image is split into 16 x 16 patches which are embedded
into vector tokens.
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Table 3. Large Models Comparison Five large models were used for benchmark
evaluation. The ViT refers to the ViTB16 model pretrained on ImageNet-1K, LlaVA-7B refers
to LLaVA-OneVision-Qwen2-7B-SI (a multi-modal model incorporating text-image
understanding), InternVL3-2B and InternVL3-78B are models from the InternVL3 series, and
GPT-5.

Model Pretrained Dataset Image Resolution Params (M)
ViT ImageNet-21K 224 x 224 86
LlaVA-7B Multi-modal 224 x 224 7000
InternVL3-2B Multi-modal 224 x 224 2100
InternVL3-78B Multi-modal 224 x 224 78400
GPT-5 Multi-modal 224 x 224 635000

LLaVA-OneVision (Li et al. 2024), an advanced multimodal Large Language Model
(LLM) that extends text-based language modeling to incorporate visual inputs. Built
upon the Qwen2 LLM as its language backbone, LLaVA-OneVision is fine-tuned on
extensive multimodal instruction data—for example, image-question-answer pairs and
vision-language dialogues.

InternVL3 (Chen et al. 2024) represents the latest generation of multimodal
foundation models that integrate visual perception and language reasoning in a unified
architecture. Unlike earlier models that relied on separate encoders, InternVL3 adopts a
shared token-based interface between vision and language, enabling tighter cross-modal
alignment. We employ two model variants as baselines: InternVL3-2B, a smaller model
suited for efficiency and fast inference, and InternVL3-78B, a large-scale model designed
for state-of-the-art multimodal reasoning. The two scales allow us to assess how model
capacity influences performance on our Gestalt reasoning tasks.

GPT-5 (OpenAl 2025) is the latest generation multimodal large language model
developed by OpenAl, supporting both image input and text output within a unified
architecture. Compared to prior models that layered vision modules on top of text-only
LLMs, GPT-5 was jointly trained on large-scale multimodal corpora, enabling integrated
reasoning over visual and linguistic information. We use the GPT-5 multimodal variant
as a baseline to examine how a state-of-the-art large model performs on our Gestalt
reasoning benchmark.

Overall Evaluation

Table 4 reports the comparative performance of all baseline models across five Gestalt
principles. The results reveal distinct differences between purely neural models and larger
multimodal architectures in their ability to capture structural regularities.

The ViT baseline, despite being trained on large-scale natural images, achieves
only moderate accuracy (around 0.5 across principles) and suffers from unstable F1,
precision, and recall. This inconsistency indicates that the model fails to form robust
grouping representations and often resorts to biased predictions. The high recall score
over principle similarity indicates that the ViT is overly biased toward predicting the
positive class. LLaVA-Qwen-7B and InternVL3-2B exhibit similar limitations: while
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Table 4. Performance Comparison. The mean and standard deviation over four evaluation
metrics: accuracy, F1 score, precision, and recall. ViT-16-224 refers to the ViT-B/16 model,
and Llava-Qwen-7B denotes LLaVA-OneVision-Qwen2-7B-SI.

Met. | Model | Proximity Similarity  Closure ~ Symmetry Continuity

ViT-16-224 0.52+0.15 0.52£0.12 0.54+0.17 0.50£0.14 0.54£0.14
Llava-Qwen-7B | 0.49 £ 0.15 0.49£0.13 0.63£0.19 0.57 £0.18 0.50 £ 0.15
Acc. | InternVL3-2B [ 0.52£0.14 0.51 £0.15 0.60 £0.17 0.57 £0.17 0.54 £0.14
InternVL3-78B | 0.61 £0.17 0.61£0.21 0.73£0.20 0.62+0.18 0.65+0.18
GPT-5 0.69+0.19 0.71 £0.23 0.77 £0.19 0.60 £0.18 0.69 £ 0.20

ViT-16-224 0.30 £0.30 0.58£0.23 0.48 +£0.30 0.23+£0.30 0.33 £0.35
Llava-Qwen-7B | 0.21 £ 0.29 0.33 +£0.33 0.53 £0.33 0.46 = 0.33 0.22+0.30
F1 |InternVL3-2B |0.23£0.30 0.31 £0.31 0.33£0.35 0.36 £0.33 0.21 +£0.30
InternVL3-78B | 0.41 £0.35 0.46 £0.37 0.59£0.37 0.45+£0.36 0.51 +£0.33
GPT-5 0.65+0.29 0.63+0.35 0.67 =0.33 0.40+0.35 0.55+£0.37

ViT-16-224 0.37+0.39 0.48+0.22 0.48£0.32 0.25+£0.35 0.32+0.34
Llava-Qwen-7B | 0.24 £0.34 0.30 £0.31 0.55+0.37 0.46 £0.34 0.24 +0.34
Pre. | InternVL3-2B | 0.30 £0.39 0.36 £0.37 0.44 £0.45 0.42+0.40 0.28 +0.40
InternVL3-78B | 0.49 £ 0.41 0.49+£0.40 0.70£0.29 0.51+£0.41 0.61 +£0.39
GPT-5 0.65+0.31 0.66+0.34 0.76 +=0.24 0.49 £0.42 0.62 £ 0.38

ViT-16-224 0.31£0.35 0.80+0.19 0.56+0.40 0.24 £0.35 0.40+0.43
Llava-Qwen-7B | 0.22 £ 0.33 0.44 £0.46 0.57£0.40 0.55+0.41 0.244+0.34
InternVL3-2B | 0.22 £ 0.31 0.33£0.36 0.29£0.34 0.35+£0.36 0.19+£0.29
InternVL3-78B | 0.41 £ 0.38 0.50 £0.42 0.55£0.39 0.45+£0.40 0.50 £ 0.36
GPT-5 0.71 +£0.29 0.66 £0.34 0.65+0.35 0.40 £0.38 0.55+0.40

Rec.

they outperform ViT on certain principles such as closure and symmetry, their overall
performance remains unstable.

InternVL3-78B demonstrates a notable improvement over the smaller models, with
consistently higher scores across all metrics and principles. Its gains are especially visible
for similarity, closure, and continuity. This reflects the benefits of scale in capturing
higher-order structural relations. GPT-5 achieves the strongest performance overall, with
the highest accuracy and precision across nearly every principle, particularly for closure
(0.77 accuracy) and similarity (0.71 accuracy). However, GPT-5 shows relative weakness
on symmetry, where both accuracy and F1 lag behind its other results, suggesting that
certain spatial-relational cues remain challenging.

[However, the heterogeneous behavior observed across different Gestalt principles and
task types (reported in the following section) is not unexpected. Each Gestalt principle
captures a distinct aspect of perceptual organization and relies on fundamentally different
visual cues, making direct performance comparisons across principles inherently limited.
For example, similarity-based grouping primarily depends on object attributes such as
color, shape, and size, while largely disregarding spatial position, which is instead the
dominant cue for proximity-based grouping. In contrast, principles such as closure and
continuity crucially depend on the integrity of contour information and the perceptual
coherence of group boundaries. (REVISED)]
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[ Moreover, spatial position itself constitutes a particularly challenging perceptual
feature. The symmetry principle, for instance, requires the model to accurately identify
correspondences between object pairs across a latent symmetry axis. Unlike proximity
or closure, symmetric groups do not exhibit a fixed or compact spatial configuration;
successful grouping, therefore, hinges on correctly inferring global scene structure rather
than local feature similarity alone. These intrinsic differences across principles help
explain the observed variability in model performance and underscore the need to
analyze Gestalt principles as distinct perceptual challenges rather than as interchangeable
grouping tasks. As we discuss further in the category level evaluation, model performance
varies even within the same principle across different task categories. (REVISED)]

Category Level Evaluation

Figure 5 presents the average F1 scores across task categories. The ViT baseline remains
weak overall, with scores rarely exceeding 0.5, and performs particularly poorly on
proximity, symmetry, and continuity. InternVL3-2B records the lowest performance
across most categories, with only marginal strengths in isolated cases. LLaVA-Qwen-
7B shows a more imbalanced profile, performing better on closure and symmetry but
worse on the remaining principles. InternVL3-78B achieves a clear performance gain,
exceeding 0.6 on several closure-related categories and maintaining more stable results
overall. GPT-5 delivers the best performance, surpassing 0.7 on proximity, similarity, and
closure, though symmetry continues to present challenges.

In summary, two key trends emerge: (i) purely neural vision models struggle to
generalize Gestalt rules despite their strong performance on natural image recognition,
(i1) multi-modal integration improves results but only at larger scales. These findings
quantitatively support the need for neuro-symbolic mechanisms, as even the strongest
models show principle-specific weaknesses and lack systematic compositionality across
grouping cues.

[ Figure 6 presents a comprehensive factor-level performance analysis across all five
Gestalt principles for the best-performing model, GPT-5. Empty cells indicate factors
that are not manipulated within specific categories. For example, group_I is absent in
proximity-based tasks because proximity grouping is only meaningful when at least
two groups are present, while group-size factors are fixed for closure categories due
to the deterministic number of objects in those stimuli. The figure reveals substantial
variation in task difficulty even among categories governed by the same Gestalt principle.
For instance, GPT-5 achieves an F1 score of 0.637 on the non-intersected splines
category, but only 0.466 on the one-split category, although both are based on the
continuity principle. This intra-principle variability leads to markedly different aggregate
performance across Gestalt principles. Overall, symmetry-based tasks are consistently
more challenging than tasks based on other Gestalt principles, indicating that symmetry
perception remains a particularly difficult capability for current models. (REVISED)]

Another notable observation is that none of the baseline models fully solve any
task category. Even GPT-5, which achieves its best performance on the fixed-number
category (F1 = 0.878), fails to reach near-perfect accuracy. This suggests that while
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Average F1 score by Categories Over baseline models
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Figure 5. Average F1 score by Categories Over baseline models. The chart compares
average F1 scores (y-axis) for proximity, similarity, closure, symmetry, continuity, and related
categories (x-axis).

large vision—language models such as GPT-5 are effective at describing object attributes
and pairwise relationships, they struggle to induce globally consistent logical rules that
simultaneously account for all objects in a scene. A similar limitation has been reported
in the context of Bongard-style visual reasoning problems Wiist et al. (2025), where
models often identify plausible local patterns but fail to capture the underlying abstract
rule governing all examples.

Concept Level Analysis

Object-Level Concept Analysis Figure 7 summarizes the mean performance for
pairwise combinations of object-level factors across all Gestalt principles and baseline
models. ViT exhibits a pronounced bias toward color-related patterns, achieving its
strongest performance on color-only and color—-shape combinations (up to 0.46 F1),
while performing substantially worse on size-related tasks. In contrast, vision-language
models show a more balanced performance profile across object-level concepts, with
relatively smaller gaps between shape, color, and size factors. Notably, tasks involving a
single factor yield performance comparable to those involving two combined factors,
suggesting limited compositional gains at the object level for these models. Despite
its overall strong performance, InternVL3-78B shows a clear F1 drop on size-related
patterns.

Group-Level Concept Analysis Figure 8 compares model performance across group-
level concepts, specifically group number and group size. In contrast to the object-level
analysis, group-level concept analysis examines how performance varies as the number
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Merged Factor-Level Performance across Principles — Model: GPT-5
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Figure 6. [Factor-Level Performance per Category Across Gestalt Principles on GPT-5.
Heatmaps show mean F1 scores for different experimental factors across task categories for
all evaluated models. Empty cells indicate factors not manipulated in that category. Red
indicating better performance. (REVISED)]

Mean Pairwise Factor Combination Performance Across All Principles
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Figure 7. Mean F1 scores for pairwise factor combinations across all Gestalt
principles. Each subplot shows a different model’s performance when two visual factors
(Shape, Color, Size) are present as relevant cues. Values are averaged across all five Gestalt
principles and task categories. Cell annotations show mean F1 scores; small text shows task
counts ("n=X"). Color scale: red (good performance) to blue (poor performance).

of groups in a scene increases and as the number of objects within each group changes.
Here, group size denotes the number of objects belonging to a single group.
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Ablation Analysis: Average Performance Across All Gestalt Principles
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Figure 8. Baseline performance across gestalt groups for five principles. Left figure shows
the F1 score over different group numbers. Right figure shows the F1 score over different
group sizes.
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Figure 9. Examples of different group sizes. Larger group sizes correspond to a greater
number of objects within each group.

[ Figure 8 shows that tasks involving a single group are consistently easier than
those involving multiple groups across all VLMs. Moreover, performance improves
monotonically with increasing group size, indicating that larger groups provide stronger
and more redundant perceptual cues for reliable grouping. This trend suggests that
sparse or highly fragmented group structures pose a greater challenge for current models,
whereas denser groups facilitate more stable group-level representations. (REVISED)]

Figure 9 illustrates examples of increasing group size (small, medium, large, and extra-
large) from the big_circle category under the closure principle. Across these scenes,
objects form three circular groups, with the number of objects per group increasing
from left to right. Correspondingly, GPT-5 achieves F1 scores of 0.00, 0.86, 0.80, and
1.00 on the tasks involving four examples. This performance gap highlights the strong
dependence of VLMs on the density of visual evidence for reliable grouping. In small-
group settings, the reduced number of objects leads to increased ambiguity, as objects can
be plausibly partitioned into multiple competing group configurations. At the same time,
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the proportion of task-relevant relational structure decreases, requiring models to rely
more heavily on abstract reasoning to extract meaningful cues from sparse observations.
As a result, small-group tasks demand stronger analytical capabilities, since the signal-
to-noise ratio is lower and the distinction between meaningful structure and spurious
patterns becomes increasingly subtle.

Effect of Training Set Size

We further test the impact of training image number using ViT-B/16 with two settings:
ViT-16-224/3 trained with three images per class (positive and negative), and ViT-16-
224/100 trained with one hundred images per class (positive and negative). As shown in
Table 5, the three-shot model achieves slightly above-chance accuracy (around 0.5) and
F1 scores that vary across principles (e.g., 0.58 on similarity but only 0.23 on symmetry),
reflecting weak but non-trivial generalization.

o Accuracy F1 Score
Principle
ViT-16-224/3  ViT-16-224/100  ViT-16-224/3  ViT-16-224/100

Proximity 0.52£0.15 0.50 £ 0.00 0.30 £0.30 0.00 +£0.05
Similarity 0.52 £0.12 0.50 £ 0.08 0.58 £0.23 0.00 £0.04
Closure 0.54 £0.17 0.50 £ 0.02 0.48 £0.30 0.01 £0.09
Symmetry 0.50 £0.14 0.50 £ 0.00 0.23£0.30 0.00 £0.02
Continuity 0.54 £0.14 0.50 £0.33 0.33£0.35 0.01 £0.08

Table 5. Effect of Training Set Size over ViT-B/16. ViT-B/16 trained with three images
retains weak generalization, while training with one hundred images collapses to constant
predictions, yielding random-level accuracy and near-zero F1 score.

In contrast, the hundred-shot model collapses during training, producing almost
constant predictions that yield accuracy near 0.50 and F1 scores close to zero across
all principles.

Kim and Kim 2023

Computation Cost and Hardware Requirement

Table 6 reports the average task-solving time (in seconds) across the five Gestalt
principles. The measurement covers the complete task-solving pipeline, starting from
the input of the training images and ending with the predicted labels for the test images,
and reports wall-clock time.

GPT-5 is accessed through the API, while InternVL-78B is evaluated using three
NVIDIA A100-SXM4-80GB GPUs. All remaining models are evaluated on a single
NVIDIA A100-SXM4-80GB GPU.

Vision-only models such as ViT and smaller VLMs such as InternVL-2B exhibit
substantially lower computational cost than large VLMs. InternVL-2B and ViT show

Prepared using sagej.cls



18 Journal Title XX(X)

stable runtimes in the range of 5 to 12 seconds across all principles . Despite their
efficiency, these models achieve relatively lower F1 scores compared to larger models.

Large VLMs are significantly more expensive. LLaVA (7B) requires approximately
23-40 seconds per task on average, while InternVL-78B achieves runtimes around
10-15 seconds but relies on three 80GB GPUs. GPT-5 is the most computationally
expensive model, exceeding 100 seconds across all principles and reaching over 150
seconds on similarity tasks. These large models achieve moderately higher F1 scores
than the other baselines, illustrating a clear trade-off between computational efficiency
and performance.

Model Proximity = Similarity —Closure Symmetry Continuity
ViT 12.49 10.07 10.48 8.43 9.83
LLaVA 26.84 23.56 39.89 27.26 30.71
InternVL-2B 5.06 5.30 6.26 5.60 6.13
InternVL-78B 14.11 13.34 15.58 12.30 14.89
GPT-5 109.45 94.34 105.46 157.56 82.59

Table 6. Average inference time (seconds) across the five Gestalt principles. Large
vision—language models incur substantially higher computational cost.

Limitations and Insights

ELVIS inherits inherent biases from its synthetic image generation process, which may
limit direct generalization to real-world visual scenes. While the use of simplified object
shapes and discretized, principle-specific patterns enables controlled and interpretable
experimentation, it does not fully capture the richness and ambiguity of natural visual
cognition. The substantial variance in model performance across different Gestalt
principles further suggests that current approaches rely on uneven perceptual and
reasoning capabilities, highlighting opportunities for deeper integration of symbolic
reasoning with more robust perceptual models.

Finally, ELVIS provides explicit ground-truth grouping annotations, enabling
supervised training of grouping models aligned with specific Gestalt principles. In real-
world scenes, however, group boundaries are often subjective and context-dependent,
making consistent annotation significantly more challenging. Perspective distortions
further complicate the interpretation of object size and spatial relationships, and the

Prepared using sagej.cls



Gestalt Vision 19

absence of reliable depth cues exacerbates annotation ambiguity. These challenges
underscore the gap between controlled synthetic benchmarks and real-world visual
reasoning, and point toward future work on weakly supervised, probabilistic, or human-
in-the-loop grouping frameworks for natural images.

Conclusion and Future Work

We introduced the Gestalt Vision (ELVIS) benchmark, designed to evaluate visual
reasoning systems on five core Gestalt principles: Proximity, Similarity, Closure,
Continuity, and Symmetry. ELVIS systematically varies object- and group-level
properties such as color, shape, size, group number, and group size, requiring models to
move beyond object recognition toward structured relational reasoning. Our evaluation
shows that purely neural baselines remain close to chance and show little sensitivity
to concept relevance, while larger multimodal models such as InternVL3-78B achieve
notable gains but still lack principle-specific generalization. GPT-5 achieves the strongest
overall performance, reaching around 0.7 accuracy across several settings, yet it
continues to struggle on some symmetry tasks.

Future work should focus on advancing visual reasoning frameworks that explicitly
encode object- and group-level rules to overcome the reliance on statistical correlations
observed in current systems. Extending ELVIS toward more naturalistic scenes and
video-based tasks will further bridge the gap to real-world reasoning. Ultimately, ELVIS
serves as both a diagnostic tool and a catalyst for building perceptual reasoning systems
that integrate accurate perception with structured, concept-grounded inference.
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Concept Coverage Analysis

Table 7 summarizes how different logical concepts are distributed across task categories
in the benchmark. Each category is grounded in one of the Gestalt principles, and the
presence or absence of object- and group-level concepts is marked. The covered concepts
include fundamental visual attributes (color, shape, size), structural properties (count,
background, overlap), and grouping information (principle, group number).

Most categories involve core visual attributes such as color, shape, size, and group
number, while certain categories incorporate additional dimensions. For example, some
of the similarity and symmetry tasks require reasoning over object count. Some of the
proximity and symmetry patterns involve overlap features. This systematic coverage
ensures that the benchmark spans both simple attribute-level reasoning and more
complex multi-concept integration across Gestalt principles.

Table 7. Coverage of logical concepts across task categories. Column abbreviations: Col
= color, Shp = shape, Cnt = count, Siz = size, Bkg = background, Ovl = overlap, Grp = group
number. Fill cells with vor X.

Category | Principle | Col Shp Cnt Siz Bkg Ovl Grp
Red Triangle Proximity v v X v X X v
Grid Proximity 4 v X v X X v
Fixed Props Proximity v v X v X X 4
Circle Features Proximity v v X v v v v
Fixed Number Similarity v v v v X X v
Pacman Similarity v X v v X X v
Palette Similarity 4 v X v X X v
Big Triangle Closure v v X v X X v
Big Square Closure v v X v X X v
Big Circle Closure v v X v X X v
Feature Square Closure v X X v X X v
Feature Circle Closure 4 v/ X 4 X X v
Feature Triangle Closure v X X v X X v
One Spline N Continuity | v v X v X X v
Intersected Splines Continuity | v v X v X X v
No Touching Splines Continuity | v v X v X X v
Overlap Splines Continuity | v v X v X v v
Radial Symmetry Symmetry | v v X v X X v
Axis Symmetry Symmetry v v v v X X v
Axis Symmetry with Bkg | Symmetry | v v v v v 4 4
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Concept-wise Performance per Principle

Figure 10 reports the factor-level performance per category across Gestalt principles
under the five baseline models. Each sub-figure corresponds to one model and separates
results by concept dimension on both object level (color, shape, size) and group level
(group size, group number).

Merged Factor-Level Performance across Principles — Model: vit_base_patch16_224
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Merged Factor-Level Performance across Principles — Model: llava-onevision-qwen2-7b
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Merged Factor-Level Performance across Principles — Model: InternVL3-78B
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Merged Factor-Level Performance across Principles — Model: GPT-5
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Figure 10. Factor-Level Performance per Category Across Gestalt Principles.
Heatmaps show mean F1 scores for different experimental factors across task categories for

all evaluated models. Empty cells indicate factors not manipulated in that category. Mean
rows summarize category-level or cross-principle performance. Color scale ranges from 0

(blue) to 1 (red), with red indicating better performance.
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Effect of Image Resolution

As a control experiment, we examine whether input resolution contributes to the
performance limitations observed in large vision—language models. We evaluate
InternVL3-78B at two commonly used resolutions, 224 x 224 and 448 x 448,
corresponding to the pretraining settings of our baseline ViT models and InternVL3-
78B itself. This comparison allows us to isolate the role of low-level perceptual fidelity
without altering any other component of the pipeline.

As shown in Table 8, accuracy remains effectively unchanged across the
two resolutions, and F1 exhibits only small increases at 448 x 448 for most
principles. The sole exception is symmetry, where higher resolution slightly degrades
performance, suggesting that additional visual detail does not help—and may even
exacerbate—difficulties in capturing axis-based structural relations. Overall, these results
confirm that resolution is not a primary bottleneck in ELVIS: the remaining gaps stem
from challenges in structured perception and grouping rather than from insufficient pixel-
level detail.

Table 8. Performance of InternVL3-78B at two resolutions. Accuracy is nearly identical
across settings, while F1 at 448 x 448 is slightly higher, indicating resolution is not the main
factor behind the errors.

Principle Accuracy FI Score

224 x224 448x448 224x224 448x448

Proximity 0.61+£0.17 0.61£0.19 0.41£0.35 0.44+0.35
Similarity 0.61+0.21 0.61£0.20 0.46 £0.37  0.48+0.36
Closure 0.73£0.20 0.74 £0.20 0.59£0.37 0.60+£0.36
Symmetry 0.62£0.18 0.52£0.16 0.45£0.36 0.35£0.30
Continuity 0.65£0.18 0.65+0.18 0.51£0.33 0.51 £0.33
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VLMs Prompts|- (REVISED)]

This appendix provides the full prompting templates used for all VLMs (LLaVA-
OneVision, InternVL3, GPT-5) evaluated in this work. As described in the main text,
models receive (i) a brief task description, (ii) six labeled demonstration examples, and
(iii) six unlabeled test examples for prediction. Each task is evaluated independently, and
the prompts follow a unified structure across all models.

All prompts follow the format below:

Rule Induction:

You are an Al reasoning about visual patterns using Gestalt principles. Principle
under consideration: give the task principle.

The positive examples are image 01, image 02, image 03. The negative examples are
image 04, image 05, image 06.

Based on the Positive and Negative examples, infer the logic rules that distinguishes
them. Output ONLY the rules.

Prediction Task:

Using the following reasoning rules: the logic rules returned by the rule induction
step. Classify this image as Positive or Negative. Only answer with positive or
negative for each image.

A visual depiction of all images (training and test) is passed to the VLMs directly through
their native multi-image input interface. GPT-5 receives the images as base64-encoded
attachments.
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Task Examples

For each Gestalt principle in ELVIS, we present one or two representative task categories
to illustrate the underlying design. The category names serve as intuitive references, but
they do not always reflect the full range of variations. Due to controlled perturbations,
some task variants may differ significantly from their original category name.

For instance, the category Red Triangle is initially designed around the idea that
each group contains one red triangle. However, certain variations derived from this
category may disregard color in the rule, resulting in tasks where the correct answer
is determined solely by the presence of a triangle—regardless of its color. These variants
are still formally associated with the Red Triangle category, though their governing
logic differs. Other categories follow the same behavior.

Proximity: Red Triangle

The pattern Red Triangle follows the Gestalt principle of proximity. The base pattern
is structured with multiple object groups, where each group consists of at least one red
triangle and several smaller ones placed closely together.

Fig. 11 presents a task where the rule is defined by color and shape. In the positive
pattern, each group contains at least one object with red color and triangle shape, with
the rest being random properties.

Fig. 12 illustrates another task variation, incorporating color only. In the positive
pattern, each group contains at least one red object; the shape of the red object is
randomly determined.

°
A
A
.
A
°
A .. [}
° [ ]
(a) Positive (b) Positive (c) Negative (d) Negative

Figure 11. Red Triangle: Each proximity group has at least one red triangle.
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Figure 12. Red Triangle: Each proximity group has at least one red object.

Similarity: Fixed Number

The category Fixed Number is based on the Gestalt principle of similarity. The base
pattern consists of an equal number of objects in different colors, with up to four
color variations. Additionally, object size and shape can vary to introduce further task
variations.

Fig. ?? illustrates a task where the rule involves counting objects of two colors.

Fig. 14 presents a variation where the task requires counting objects among four colors.
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Figure 13. Fixed Number: Same amount of yellow circles and blue circles.
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Figure 14. Fixed Number: Same amount of red, yellow, blue, and green circles.
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Closure: Feature Square

The category Feature Square follows the Gestalt principle of closure. Its base pattern
consists of four 3/4 circles arranged to outline a square. Fig. 15 illustrates a task where
object colors are limited to red or blue. Fig. 16 presents a variation where all circles
are of equal size. Each task includes a counterfactual pattern that disrupts closure while
maintaining all other rules.
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Figure 15. Feature Square: Closure square, obj color is either red or blue
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Figure 16. Feature Square: Closure square, all objects have same size.
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Symmetry: Axis Symmetry

The category axis sys is based on the Gestalt principle of symmetry. Its base pattern
places a random axis with objects arranged symmetrically around it.

Fig. 17 shows a task where object shapes are symmetric along the axis, with colors and
sizes assigned randomly. Fig. 18 shows a variant where shapes remain symmetric but all
objects share the same color and size.
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Figure 17. Axis Symmetry: Symmetry shape, random color and size
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Figure 18. Axis Symmetry: Symmetry shape, color, and size
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Continuity: Intersected Splines

The category Intersected Splines follows the Gestalt principle of continuity. Its base
pattern consists of n intersecting splines formed by small objects.

Fig. 19 illustrates a task where all objects share the same shape. Fig. 20 presents a
variation where both the colors and shapes of the objects are identical.
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Figure 19. Intersected Splines: Each spline is consists of same shape of objects.
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Figure 20. Intersected Splines: Two splines of objects. The color of the objects can be either
yellow or green.
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