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Abstract. Combining deep learning and common sense knowledge via neurosymbolic integration is essential for semantically
rich scene representation and intuitive visual reasoning. This survey paper delves into data- and knowledge-driven scene repre-
sentation and visual reasoning approaches based on deep learning, common sense knowledge and neurosymbolic integration. It
explores how scene graph generation, a process that detects and analyses objects, visual relationships and attributes in scenes,
serves as a symbolic scene representation. This representation forms the basis for higher-level visual reasoning tasks such as
visual question answering, image captioning, image retrieval, image generation, and multimodal event processing. Infusing
common sense knowledge, particularly through the use of heterogeneous knowledge graphs, improves the accuracy, expressive-
ness and Reasoingability

:::::::
reasoning

::::::
ability of the representation and allows for intuitive downstream reasoning. Neurosymbolic

integration in these approaches ranges from loose to tight coupling of neural and symbolic components. The paper reviews and
categorizes

::::::::
categorises the state-of-the-art knowledge-based neurosymbolic approaches for scene representation based on the

types of deep learning architecture, common sense knowledge source and neurosymbolic integration used. The paper also dis-
cusses the visual reasoning tasks, datasets, evaluation metrics, key challenges and future directions, providing a comprehensive
review of this research area and motivating further research into knowledge-enhanced and data-driven neurosymbolic scene rep-
resentation and visual reasoning.

Keywords: scene graph, image representation, deep learning, common sense knowledge, neurosymbolic integration, visual
reasoning

1. Introduction

The field of Artificial Intelligence (AI) has seen
::::::::
witnessed significant advancements, particularly in scene repre-

sentation and visual reasoning, with the integration of deep learning, common sense knowledge, and NeuroSymbolic
(NeSy) approaches

::::::::
integration

:
[1–4]. NeSy integration combines the strengths of neural and symbolic approaches,

enhancing the performance of black-box neural networks and enabling large-scale symbolic reasoning. Scene Graph
Generation (SGG), a process that constructs symbolic image representations, has become a widely used technique
for higher-level visual reasoning tasks [5, 6]

::
[5]. Despite substantial progress in deep learning and multi-modal
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methods in computer vision, data-centric techniques often fall short in complex visual reasoning problems that re-
quire semantic and relational information [7]. NeSy hybrid methodologies

::
[6].

:::::
NeSy

:::::::::
integration

::::
and

:::::::
common

:::::
sense

:::::::::
knowledge

:::::::
infusion have emerged to address this, finding applications in areas

::::::
diverse

::::::::::
applications

:
such as visual

narration [8], self-driving vehicles [9], mathematical logic [10], robotic manipulation [11], and medical diagnostics
[12].

:::::::
Consider

::
a
:::::::
scenario

::::::
where

:
a
:::::
Deep

::::::
Neural

::::::::
Network

::::::
(DNN)

::::::
trained

:::
for

:::::
SGG

:::::::::
encounters

:::
an

:::::
image

::
of

::
a
:::::::
bustling

::::
street

::::::
scene.

::::::::::::
Traditionally,

::
it
::::::
excels

::
in
::::::::::

identifying
:::::::

objects
::::
like

::::
cars,

:::::::::::
pedestrians,

::::
and

::::::
traffic

:::::
lights.

:::::::::
However,

::
by

::::::::::
integrating

::::::::
relational

::::
and

:::::::::::
background

::::::::::
information

:::
via

::::::
NeSy

::::::::::
approaches,

::::
the

:::::::
network

:::::
goes

:::::::
beyond

:::::
mere

:::::::::::
identification.

::
It

::::::
begins

::
to

:::::::::
understand

::::::::
complex

::::::::::
interactions,

::::
such

::
as

::
a
:::::::::
pedestrian

::::::
waiting

::
to
:::::
cross

:::
the

::::
road

:::
or

:
a
:::
car

:::::::
stopping

::
at

:
a
:::::
traffic

:::::
light,

:::
by

:::::::
infusing

:::::::
common

:::::
sense

:::::::::
knowledge

:::::
from

:::::::::
knowledge

::::::
graphs

::
[7]

:
.
::::
This

:::::
NeSy

:::::::::
integration

::::::
imbues

:::
the

:::::::
network

::::
with

::
an

::::::::
enhanced

:::::
ability

::
to
::::::
reason

:::::
about

:::
the

:::::
scene,

::::::::::
recognising

:::
not

:::
just

:::
the

::::::
objects

:::
but

::::
also

::::
their

:::::::::::
interrelations

:::
and

::::::
implied

:::::::
actions.

:::
For

::::::::
instance,

:
it
::::
can

::
be

:::::::
inferred

:::
that

::
a

:::::
person

::::
with

::
a

:::::::
shopping

::::
bag

::
is

:::::
likely

::::::
coming

::::
from

::
a

:::::
store,

::
or

::
a
:::
car

:::::::
slowing

:::::
down

:::::
near

:
a
:::::::::

pedestrian
::::::::

crossing
::::::
implies

::::::::
yielding.

:::::
This

:::::::
enriched

:::::::::::::
understanding,

:::::::::
combining

::::::::::
DNN-based

::::::
vision

::::
with

::::::::
common

:::::
sense

:::::::::
knowledge

:::::
from

:::::::::
knowledge

::::::
bases,

:::::::::::
significantly

:::::::
elevates

:::
the

:::::::::
capabilities

::
of

:::::
scene

:::::::::::
graph-based

:::::
visual

:::::::::
reasoning,

::::::
leading

::
to
:::::

more
::::::::
accurate,

::::::::::::
context-aware,

::::
and

::::::::::
semantically

::::
rich

::::
scene

:::::::::::::
interpretations.

Despite the advancements in SGG, its practical applicability remains constrained by several challenges that di-
rectly impact its accuracy, expressiveness, and robustness. The quality of annotations and the skewed distribution
of relationship predicates in crowd-sourced datasets have been identified as significant challenges for data-driven
SGG methods. For instance, generic relationship predicates like "on", "has", and "in" dominate the Visual Genome
dataset [13]. These generic predicates often fail to capture the nuanced visual relationships in scenes, thereby af-
fecting the accuracy of visual relationship prediction in SGG. The expressiveness of SGG, reflecting its ability to
depict scenes in a comprehensive and intuitive manner, is also compromised. For example, the relationship (man,
riding, bike) is more accurate and expressive than (man, on, bike). The task is further complicated by the vast vari-
ability in the visual appearances of relationships across different scenes. Consider the relationships (man, holding,
food) and (man, holding, bat); while they share the same predicate, their visual representations differ significantly.
Furthermore, the robustness of SGG, which refers to its consistent performance across both familiar and unfamiliar
scenes and regardless of the frequency of visual relationships in datasets, is also an important concern. Numerous
efforts have been made to overcome these obstacles, exploring novel facets of visual relationships in images, such
as heterophily [14] and saliency [15], and employing advanced techniques like knowledge transfer [16], linguistic
supervision [17] and zero-shot learning [18].

Common sense knowledge infusion,
::::::::::
particularly,

:
has evolved as a promising strategy to tackle these challenges

[6]. Incorporating background details and related facts about scene components enhances the expressiveness of the
representation and the performance of downstream reasoning [6]. While statistical and language priors have been
widely used in SGG, they offer limited generalizability

::::::::::::
generalisability. Some KGs, such as ConceptNet [19], and

WordNet [20], have been utilized
:::::
utilised

:
in SGG. These KGs provide text-based and lexical knowledge representing

different forms and notions of common sense. However, they do not provide broad common sense knowledge about
visual concepts. Heterogeneous KGs

:
A

::::::::::::
heterogeneous

:::
KG, such as the Common Sense Knowledge Graph (CSKG)

[21], provide a wider range
:::::::
integrates

:::::::
entities

:::
and

:::::::::::
relationships

:::::
from

:::::::
multiple

::::::::
sources.

::::
Each

::::::
source

::::::::::
contributes

:::::::
different

::::::
aspects

:
of common sense knowledgeabout visual concepts and are crucial yet underutilized sources for the

infusion of external
:
,
:::::::
resulting

::
in
::

a
:::::::::::::
comprehensive

:::::::
resource

:::::::
covering

::
a
:::::
broad

::::::::
spectrum.

::::::
These

::::::::::::
heterogeneous

::::
KGs

::::
offer

::::
rich

:::
and

::::::
diverse

:
common sense knowledge in scene representation and visual reasoningtechniques

::::::
related

::
to

:::::
visual

::::::::
concepts.

::::::::
However,

::::
they

:::
are

:::::::::::
underutilised

::
in

::::::::
enhancing

:::::
scene

:::::::::::::
representations

:::
for

:::::
visual

::::::::
reasoning.

This paper presents a comprehensive review of the combination
::::::::
promising

::::::::::
intersection of deep learning, common

sense knowledge , and NeSy integrationfor ,
::::::::::
particularly

::::::::
focusing

:::
on semantic scene representation and visual

reasoning. Such a comprehensive survey on this topic is inspired by
:::::
Given the growing interest in combining deep

learning, common sense knowledge, and NeSy integration in computer vision. The promise of this research direction
requires a survey that clearly presents the current state of the literature on this subject and points

:::
and

:::::::::
significant

:::::::
potential

::
in

:::
this

::::
area,

:::
our

::::::
survey

::::
aims

::
to

:::::::
provide

:
a
::::
clear

::::
and

:::::::
thorough

::::::::
overview

::
of

:::
the

::::::
current

::::::::
literature.

:::
We

::::
also

::::
point

out the current challenges, prospects, and applications to guide future research, ensuring that efforts are channeled

:::::::::
channelled effectively to address the challenges and elevate the performance of SGG to a practical level. Our survey
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reviews state-of-the-art techniques, datasets, and evaluation metrics, classifies
:::::::::
categorises existing SGG methods,

and discusses key challenges and promising future research directions. This survey aims to serve as a valuable
resource for researchers and practitioners in the field, guiding future research directions and contributing to the
development of more effective and practical solutions for real-world applications.

1.1. Existing Surveys

Garcez et al. [22] and Wang et al. [23] provided comprehensive reviews of neuro-symbolic
::::
NeSy

:
AI, discussing

its development, forms of integration, the importance of representation, and promising future research directions.
Ilievski et al. [24] analyzed

:::::::
analysed

:
multiple sources of common sense knowledge, categorizing

::::::::::
categorising them

into 13 dimensions and suggesting a roadmap for developing a unified resource for neuro-symbolic
:::::
NeSy meth-

ods. Kursuncu et al. [25] discussed the potential of hybrid neuro-symbolic
::::
NeSy

:
learning approaches that integrate

deep learning and knowledge graphs. Meanwhile, Chang et al. [5] provided a comprehensive review of SGG meth-
ods, applications, and datasets, while Zhu et al. [26] systematically summarized

:::::::::
summarised

:
deep learning-based

SGG methods and compared their performance across different datasets and representations [26]. These surveys are
summarized

::::::::::
summarised in Table 1 and broadly classified into three domains, i.e.,

:
NeSy integration, common sense

knowledge infusion and SGG, based on the main focus of each survey paper. The intersection of these domains
is emerging as a promising research direction, showing significant potential for intuitive visual reasoning. There
is a substantial need for a specialized

::::::::
specialised

:
survey paper on deep learning and common sense knowledge

combined via NeSy integration for SGG and visual reasoning, which our paper addresses.

Table 1
Comparison with existing surveys

Domain Survey (Year) Key Attributes
Neurosymbolic (NeSy)
Integration

Garcez et al. [22] (2023) neurosymbolic AI, machine learning, reasoning, explainable AI, deep learning,
trustworthy AI, cognitive reasoning

Wang et al. [23] (2022) neurosymbolic AI, symbolic AI, statistical AI, deep learning

Commonsense Knowledge
Infusion

Ilievski et al. [24] (2021) common sense knowledge, semantics, knowledge graphs, reasoning
Kursuncu et al. [25]
(2019)

knowledge-infused learning, knowledge graph, neural network, neurosymbolic
AI

Scene Graph Generation
(SGG)

Zhu et al. [26] (2022) scene graph generation, visual relationship detection, object detection, scene
understanding

Chang et al. [5] (2021) scene graph, visual feature extraction, prior information, visual relationship
recognition

Intersection of the three
domains

Ours (2023) scene graph, visual reasoning, scene understanding, deep learning, common
sense knowledge, neurosymbolic integration, VQA, image captioning

1.2. Contributions and Organization
::::::::::
Organisation

This survey aims to review and summarize the literature on using deep learning, common sense knowledge and
NeSy integration for scene representation and visual reasoning. The key contributions of this survey are as follows:

– To the best of our knowledge, this is the first paper to provide a comprehensive survey of the combination of
deep learning, common sense knowledge and NeSy integration for semantic scene representation and visual
reasoning.

– We provide a comprehensive review of the state-of-the-art techniques, datasets and evaluation metrics for
knowledge-based scene representation and visual reasoning approaches. We also classify the existing scene
graph generation methods based on deep learning architecture, common sense knowledge source and NeSy
integration type used in each method.
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Survey Paper

4. Performance Evaluation
5. Challenges and Opportunities

2.1. Deep Learning Architectures

2.2. Common Sense Knowledge Infusion

2.3. Neurosymbolic Integration

3.1. Visual Question Answering

3.2. Image Captioning

3.3. Other Tasks

4.2. Downstream Reasoning Tasks

4.1. Scene Graph Generation
5.1. Contextual Relevance of Knowledge

5.2. Bias and Generalizability

5.3. Leveraging Heterogeneous Knowledge

5.4. Temporal Relationships6. Conclusion

2. Semantic Scene Representation
1. Introduction

3. Downstream Visual Reasoning

Fig. 1. Structure of the survey paper.

– We discuss the key challenges of the existing knowledge-based scene representation and visual reasoning meth-
ods and present contextual relevance of knowledge, bias and generalizability

::::::::::::
generalisability, use of heteroge-

neous common sense knowledge and temporal visual relationships as promising future research directions.

The rest of this paper is organized
::::::::
organised as follows. Section 2 reviews the state-of-the-art in knowledge-based

semantic scene representation in detail and classifies the existing approaches based on deep learning architecture,
common sense knowledge source and NeSy integration type. Section 3 discusses the downstream tasks that leverage
the structured scene representation for intuitive visual reasoning. Section 4 discusses the benchmark datasets and
performance measures used for the evaluation of SGG and downstream reasoning methods. Section 5 provides a
summary of the main challenges and promising future directions in this area of work. Finally, Section 6 summarizes

:::::::::
summarises

:
and concludes the paper. The structure of this survey is presented in Figure 1.

2. Semantic Scene Representation

High-level visual reasoning necessitates semantic and relational information, especially concerning object in-
teractions within scene representations. Recently, there has been a surge in the adoption of knowledge-based and
NeSy approaches for semantic scene representation. The effectiveness of downstream visual reasoning tasks is
largely dependent on the expressiveness and quality of the semantic scene representation. Several efforts have
been undertaken to capture visual features and object interactions in a systematic and explicit manner. The

::::
SGG

:::
task

::::::::
processes

:::
an

:::::
input

:::::
image

::
to

::::::::
generate

::
its

:
scene graph, which structures objects and pairwise relationships in a

semantically-grounded manner, has emerged as a commonly used semantic scene representation [5]. SGG comprises
the detection and

:
a

::::::::
structured

::::::::::::
representation

::::
that

:::::::::::
semantically

::::::::
organises

::::::
objects

::::
and

::::
their

:::::::::::
relationships

:::
[5]

:
.
::::
This

::::::
process

:::::::
initiates

::::
with

::::::
object

::::::::
detection

::::::
within

:::
the

::::::
image,

::::
then

::::::::
proceeds

::
to

:::::::
classify

::::::
object

::::::::
attributes.

::
It
:::::::
involves

::
a

contextual analysis of objects, visual relationships and attributes, leading to the construction
::::
these

:::::::
objects,

:::::::
coupled

::::
with

:::::::::
multimodal

::::::
feature

:::::::
learning

:::
to

::::::
predict

:::::::
pairwise

:::::
visual

::::::::::::
relationships.

::::
This

::::::
process

:::::::::
concludes

::
in

:::
the

:::::::
creation of

a symbolic representation of the scene, as demonstrated
:::::::
depicted in Figure 2. These symbolic scene graphs lay

:::
The

::::
scene

::::::
graph

:::
has

::::::::
emerged

::
as

:
a
::::::::::

commonly
::::
used

::::::::
semantic

:::::
scene

::::::::::::
representation

:::::
which

::::
lays

:
the groundwork for ad-

vanced visual reasoning with examples of Visual Question Answering (VQA), image captioning, Multimedia Event
Processing (MEP), image retrieval and image generation

::
[6].
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Fig. 2. A schematic representation of the typical scene graph generation process comprising
:::::::
(beginning

::
at

::
the

::::::
bottom

::
left

:::
and

::::::::
concluding

:
at
:::
the

:::::
bottom

::::
right)

:::
that

:::::::
comprises

:
object detection, multimodal feature learning, common sense knowledge infusion, relationship predicate

classification, and scene graph construction

Deep learning is integral to the task of SGG. Deep learning architectures, such as Convolutional Neural Networks
(CNNs)

:::
[27], Recurrent Neural Networks (RNNs)

::::
[28], and Graph Neural Networks (GNNs)

::::
[29], can extract

and understand complex visual features, handle large volumes of unstructured data, and capture intricate relation-
ships between objects. These capabilities make deep learning essential for processing and interpreting the complex
visual data involved in SGG. SGG is a complex task due to the extensive semantic space of potential pairwise
relationships between objects in a scene. Capturing all these relationships in a finite training dataset is nearly impos-
sible. Therefore, the integration of common sense knowledge, including statistical priors [30–32], language priors
[33, 34]

:::::::
[33–35], and KGs [36–40]

:::::::::
[7, 36–40], becomes crucial. Common sense knowledge infusion helps bridge

the gap between the limited training data and the vast semantic space, enabling a more accurate and comprehen-
sive representation of relationships within a scene. NeSy integration in SGG techniques can be loosely or tightly
coupled. In loose coupling, [31, 36, 37]

::::::::::::
[7, 31, 36, 37] the neural and symbolic components operate independently,

interacting as needed, and focus on distinct yet complementary tasks. Meanwhile, tight coupling [30, 32–34, 38–40]

::::::::::::::::
[30, 32–35, 38–41] deeply integrates symbolic and neural components, either incorporating symbolic knowledge di-
rectly into the neural network architecture or encoding it into the network’s distributed representation. The following
subsections present a detailed overview of various deep learning architectures, common sense knowledge sources
and NeSy integration types used in knowledge-based SGG. Table 2 provides an overview of their characteristics,
their main types and associated methods.
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Table 2
Summary of Main Characteristics of Knowledge-based NeSy SGG Methods

Characteristic
:::::::::

Characteristic Type
::::
Type Description

::::::::
Description Methods

::::::
Methods

CNN Used for local and global visual feature extraction and object detection Learns hierarchical representations from large volumes of raw data.
Used for local and global visual feature extraction and object detection.

Learns hierarchical representations from large volumes of raw data.
[30–34, 36–40]

::::::::
[7, 30–40]

RNN Captures contextual information and learns dependencies between objects Handles sequential data and maintains information over longer sequences
Captures contextual information and learns dependencies between objects.
Handles sequential data and maintains information over longer sequences

[31, 36, 38, 40]
::::::::::::
[7, 31, 36, 38, 40]

Deep Learning
Architecture

GNN Processes graph-structured data and facilitates message passing in SGG Learns local information and captures the relationships between objects
Processes graph-structured data and facilitates message passing in SGG.
Learns local information and captures the relationships between objects

[30, 32, 37, 39]

DQN Formulates SGG as a sequential decision-making process Handles high-dimensional continuous data and unseen inputs
Formulates SGG as a sequential decision-making process.

Handles high-dimensional continuous data and unseen inputs
[34]

::::::::
Transformer

Captures long-range inter-object dependencies in SGG.
Handles global scene context to improve relation understanding. :::

[37]

Statistical Prior Captures structural regularities in visual scenes Models statistical correlations between object pairs
Captures structural regularities in visual scenes.

Models statistical correlations between object pairs
[30–32]

Common Sense
Knowledge Source

Language Prior Refines relationship predictions using semantic information Helps recognize relationships between semantically related objects
Refines relationship predictions using semantic information.

Helps recognise relationships between semantically related objects
[33, 34]

:::::
[33–35]

Knowledge Graph Provides a structured representation of common sense knowledge Facilitates inference of unseen visual relationships
Provides a structured representation of common sense knowledge.

Facilitates inference of unseen visual relationships
[36–40]

:::::::
[7, 36–41]

Neurosymbolic
Integration

Loose Coupling Independent and sequential operation of neural and symbolic components Flexibility in handling distinct yet complementary tasks
Independent and sequential operation of neural and symbolic components.

Flexibility in handling distinct yet complementary tasks
[31, 36, 37]

::::::::::
[7, 31, 36, 37]

Tight Coupling Symbolic knowledge is directly encoded into the neural networks Unified symbolic reasoning and neural learning capabilities
Symbolic knowledge is directly encoded into the neural networks.

Unified symbolic reasoning and neural learning capabilities
[30, 32–34, 38–40]

:::::::::::::
[30, 32–35, 38–41]

2.1. Deep Learning Architectures

SGG involves detecting and classifying objects in an image and understanding the relationships between them.
This process requires the interpretation of complex visual data, a task that deep learning is uniquely equipped to
handle. Deep learning architectures are capable of learning hierarchical representations from raw data. These archi-
tectures can automatically learn to extract and combine features, layer by layer, from raw pixels in images to form
high-level features, such as edges, textures, and shapes. This ability to learn and understand features at various levels
of abstraction allows these models to recognize

::::::::
recognise

:
and classify objects and visual relationships in an image,

which is the core task in SGG. Moreover, deep learning architectures can handle large amounts of unstructured data,
such as images, videos and text, and are capable of learning from this data in an end-to-end manner. Deep learning
architectures can capture complex non-linear relationships and dependencies between variables, which is crucial for
understanding the visual relationships between various objects detected in an image. For instance, the relationship
between a person and a bicycle in an image might depend on various factors, such as the position and orientation of
the person and the bicycle, and deep learning architectures can learn to capture these complex dependencies.

2.1.1. Convolutional Neural Networks
CNN

:::
[27] is a predominant deep learning architecture in SGG due to its exceptional capability in extracting visual

features from images. It is employed to extract global and local visual features of an image, subsequently facilitat-
ing the prediction of relationships between subjects and objects through classification. Most of the knowledge-based
SGG techniques [30–34, 36–40]

:::::::::::::::
[7, 30–34, 36–40] use Faster RCNN

:::
[42] with a CNN-based backbone network for

detecting objects in images prior to visual relationship detection. Khan et al. [36] used the feature maps extracted
from the underlying CNN in Faster RCNN by applying RoIAlign to the image regions to obtain local and global
region features of each detected object, which forms the basis for further processing and relationship prediction.
DSGAT [30] incorporated Faster RCNN with a VGG16 backbone in its bounding box module to generate object
proposals prior to visual relationship detection. IRT-MSK [37] also employed Faster RCNN, however, the authors
used a transformer to extract and fully explore the context of visual features rather than extracting visual features of
each entity individually, enhancing the understanding of the visual scene. COACHER [38] used a pre-trained Faster
RCNN for generating a set of region proposals, label probabilities distributions, and visual embeddings for each
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detected object as a part of the zero-shot SGG framework. GB-Net [39] represented objects detected using Faster-
RCNN as scene entity nodes in the subsequent stages processing the detected objects, each with a label distribution,
bounding box and RoI-aligned feature vector. KB-GAN [40] employs a Region Proposal Network (RPN), a type
of CNN, for

:::
the extraction of object proposals in images. The RPN module generates bounding boxes for potential

objects in the image, which are then used to construct subgraph proposals. VRD Model [33] comprises a CNN to
classify objects and predicates within an image by processing the image region representing the union of the bound-
ing boxes of the interrelated objects.

:::
Yu

::
et

::
al.

:::::
[35]

:::::
utilised

:::::::
CNNs,

:::::::::
specifically

::::::::
VGG-16,

:::
to

::::::
extract

:::::
visual

:::::::
features

::::
from

:::
the

:::::
union

::
of

:::::::::
bounding

:::::
boxes

::
of

::::::
object

::::
pairs

::
in

:::::::
images

::
to

::::
learn

::::
rich

:::::
visual

:::::::::::::
representations

:::
for

::::::::::::
understanding

::
the

:::::::::::
relationships

:::::::
between

:::::::
objects,

:::::
which

:::::
were

:::
then

:::::::::
integrated

::::
with

::::::::
linguistic

:::::::::
knowledge

:::
for

:::::::::::::
visual-linguistic

::::::
feature

:::::::
learning

::
for

::::::::::
relationship

:::::::::
prediction.

:

2.1.2. Recurrent Neural Networks
The interaction of information among various objects within a scene, along with their contextual information,

is vital for identifying pairwise visual relationships between these objects. Knowledge-based SGG models built
on RNN

::::
[28] and its variants, i.e.,

:
Long Short-Term Memory (LSTM)

::::
[43] and Gated Recurrent Unit (GRU)

::::
[44]

networks, inherently excel at capturing this contextual information within the scene graph and reasoning based on
the structured data within the graph. Khan et al. [36] used two sets of Bi-directional LSTM (BiLSTM)

::::
[45] layers:

one to encode the region features, image regions, and class labels as individual visual context features, and one
to encode these individual visual context features of objects and concatenate them into combined pairwise object
features for relationship classification in SGG. The COACHER model [38] utilizes

::::::
utilises a bi-directional LSTM to

generate background embeddings that encapsulate information from both the region proposal and the global image
level. A separate LSTM is then employed to decode each region proposal embedding, yielding a one-hot vector
that signifies the refined class label of a region proposal. Once refined object labels for all region proposals are
obtained, they are processed to generate context embeddings through a BiLSTM. These context embeddings are
subsequently used to derive edge embeddings and predict the relationship between each pair of bounding boxes.
MotifNet [31] leverages LSTMs to encode a global context that guides local predictors. The model sequences the
prediction of bounding boxes, object classification, and relationship prediction in such a way that the global context
encoding of earlier stages provides a rich context for prediction in the following stages. The global context across
image regions is calculated and disseminated via BiLSTMs. This context is utilized

::::::
utilised by another LSTM layer

that assigns labels to each region based on the overall context and the preceding labels. Subsequently, a dedicated
BiLSTM layer computes and propagates the information for predicting edges, based on the regions, their labels,
and the context. This approach allows the model to capture crucial dependencies between object labels and relation
labels during the SGG process. KB-GAN [40] employed GRUs in the knowledge retrieval and embedding stage;
the retrieved common sense relationships, transformed into a sequence of words, are fed into a bidirectional GRU
for the effective encoding of the sequence, capturing both past and future context.

2.1.3. Graph Neural Networks
The graph structure of scene graphs makes graph-based architectures, such as GNN

:::
[29], Graph Convolutional

Networks (GCN)
::::
[46] and Graph Attention Networks (GAT)

::::
[47], a suitable choice to enhance SGG performance.

GCN is used to effectively learn local information between neighbouring nodes in knowledge-based SGG. Its inher-
ent graph-based structure plays a crucial role in guiding message passing in GNN- and GCN-based SGG methods.
DSGAT [30] used a GAT component in its graphical message passing module for effective contextual learning and
recognizing

:::::::::
recognising

:
the object classes and visual relationships. The GAT component allows for effective mes-

sage propagation and relationship prediction by facilitating interaction between object features and relational fea-
tures via the inherent weight and attention weight of the multi-head GAT. IRT-MSK [37] leveraged GCNs to process
the graph-structured knowledge, which includes both relational and common sense knowledge, and learn the seman-
tic features of the entities embedded in the KG during the SGG process. GB-Net [39] employed Gated GNNs that
iteratively propagate information within and between two graphs, i.e.,

:
the scene graph and a background common

sense graph, successively inferring edges and nodes, leveraging the strengths of GNNs in handling graph-structured
data and learning local information between neighbouring nodes. KERN [32] used a GNN to propagate messages
through a graph built based on statistical object co-occurrence information, learning contextualized

::::::::::::
contextualised

representations for each region and achieving better label prediction. A second GNN is used to explore the interplay
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between relationships and objects, with nodes representing objects and relationships, and edges representing the
statistical co-occurrences between the corresponding object pair and all the relationships.

2.1.4. Deep Q-Networks
:::::
Other

::::::::::
Transformer

:::::::
models

:::
are

::::
also

:::::
used

:::
in

:::::
SGG

:::::::
because

::::
they

:::::::
capture

::::::::::
long-range

::::::::::::
dependencies

::::
and

:::::::::
contextual

::::::::::
information.

:::::::::
Compared

::
to

::::::
CNNs,

:::::::::::
transformers

:::::::
provide

:
a
:::::

more
::::::
global

::::::::::::
understanding

::
of

:::
the

:::::
scene

:::
by

::::::::::
considering

::
the

:::::::::::
relationships

::::::::
between

::
all

::::::::
elements

::::::
within

::
an

::::::
image.

::::
This

:::::
helps

:::::
SGG

::::::
models

:::::::::
understand

:::
the

:::::::::
relational

::::::
context

:::::::
between

:::::::
multiple

:::::::
objects

::
to

:::::::
generate

::::::
scene

::::::
graphs.

:::::
Guo

::
et

::
al.

:::::
[37]

:::::::
proposed

:::
an

:::::
SGG

::::::
model

:::
that

:::::::::
constructs

:::
an

:::::::
instance

::::::
relation

:::::::::::
transformer,

::::::
which

::::::
applies

:::
the

::::::::::
transformer

::::::::
structure

:::
to

:::::
visual

::::::::
features,

::::
label

:::::::::::
embeddings,

::::
and

::::::
position

:::::::::::
embeddings

::
to

::::::
encode

:::::::::
contextual

::::::::::
information

::::
and

::::::::
relational

::::::::
contexts

:::::
within

:::::::
images.

::::::::::::
Transformers

::::
have

::::
been

::::
more

::::::::::
extensively

::::
used

::
in

:::::
VQA

:::::::
[48–51]

:::
and

:::::
image

:::::::::
captioning

:::::::
[7, 51]

:::::
works,

:::::
which

:::
are

::::::::
discussed

:::
in

::::::
Section

::
3.

Deep Q-Networks
:::::::
(DQNs), also contribute to the rich variety of deep learning techniques applied in knowledge-

based SGG, further expanding the possibilities for scene understanding. DeepVRL[34] approaches the task of iden-
tifying visual relationships and attributes as a sequential process, managed using a Deep Q-Network (DQN)

:::::
DQN.

The DQN is employed to calculate three sets of Q-values, each corresponding to the action sets of attributes, pred-
icates, and object categories. Using an ϵ-greedy strategy, the DQN sequentially identifies

::::::::::::
systematically

::::::
selects

the optimal actions to uncover
::
for

::::::::::
identifying

:
objects, relationships, and attributes in the provided image. The

framework also
:::::
within

:::
the

:::::
visual

:::::::
context,

:::::::
directly

::::::
linking

:::
the

::::::::::::::
decision-making

:::::::
process

::::
with

:::
the

:::::
visual

::::::::
elements

::
in

::
the

::::::
image.

:::::::::::
Additionally,

:::
the

:::::::::
framework

:
incorporates a replay memory to retain information from previous episodes,

which aids in stabilizing
::::::::
stabilising

:
the training by averaging the training distribution over past experiences and

minimizing
:::::::::
minimising

:
the correlation among training examples,

:::::::
thereby

:::::::::
enhancing

::
its

::::::::
capacity

::
to

:::::::
interpret

::::
and

::::::
analyse

:::::
visual

::::::::::
information.

2.2. Common Sense Knowledge Infusion

SGG is an inherently complex task due to the vast semantic space of possible relationships. The semantic space,
in this context, refers to all possible relationships that can exist between different objects within a scene. This space
is vast and complex, encompassing everything from simple relationships such as “cat-sits-on-mat" to more complex
ones like “bird-perches-on-branch-of-tree". Given the infinite variety and complexity of these relationships, it is
nearly impossible to capture all of them within a finite training dataset. This is where the infusion of common sense
knowledge, a concept rooted in the understanding of the world as humans perceive it [24], becomes particularly
crucial. Common sense knowledge refers to the basic, generally accepted information and reasoning that humans
use to navigate the world around them. In the context of SGG, this includes understanding that birds are more likely
to be

:::::::
generally

:
found in trees

::::
rather

:
than fish, or that people are more likely to

:::::::
generally

:
sit on chairs

:::::
rather

:
than

on clouds. By integrating this common sense knowledge into the SGG pipelines, we can bridge the gap between
the limited scope of the training data and the vastness of the semantic space. This allows for a more accurate and
comprehensive representation of the relationships within a scene, even when these relationships are not explicitly
present or adequately represented in the training data. Common sense knowledge sources used in SGG can be
broadly classified into three categories: statistical prior, language prior, and KG [6].

2.2.1. Statistical
:::
and

::::::::
Language

:
Priors

Statistical priors are a form of common sense knowledge that leverages the observed structural regularities and
statistical correlations in visual scenes. For instance, certain relationships such as bird-flies-in-sky or dog-chases-cat
are more frequently observed than others like bird-swims-in-water or cat-chases-dog. By modelling these statistical
correlations, SGG can more accurately identify and predict visual relationships. It is similar to understanding the
world through patterns and trends that are statistically significant, providing a probabilistic framework to predict
relationships that are likely to

::::::::
generally occur based on past observations. For example, DSGAT [30] integrates

statistical prior probabilities into the sparse graph component and graphical message propagation network to con-
struct a sparse KG and learn statistical co-occurrence modelling for identifying and predicting visual relationships.
MotifNet [31] also used statistical priors as a form of common sense knowledge, capturing dependencies between
objects and relationships by leveraging structural regularities and statistical correlations observed in visual scenes.



M.J. Khan et al. / A Survey of Neurosymbolic Visual Reasoning with Scene Graphs and Common Sense Knowledge 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

The model breaks down the likelihood of a graph into three distinct elements: bounding boxes, objects, and relations,
making no independent assumptions during SGG. KERN [32] leverages statistical correlations between pairwise
objects and visual relationships to regularize

::::::::
regularise

:
the semantic space and minimize

:::::::
minimise

:
the unbalanced

distribution problem by explicitly representing these statistical correlations in a structured KG. The technique uses
a routing mechanism to pass messages within the graph, exploring relationships between objects, thus integrating
statistical prior knowledge into the deep learning process in SGG.

:::::::
Causality

::
is
::::
also

:::::
used

::
as

::::::::
statistical

::::::::
common

::::
sense

::::::::::
knowledge

::
to

:::::::
enhance

:::::
visual

:::::::::
reasoning.

:::
The

:::::::
CMCIR

:::::::::
framework

::::
[52]

:::::::
employs

::::::
causal

:::::::::::
interventions

::
to

::::::
address

:::::::
spurious

::::::::::
correlations

::
in

::::::
VQA,

:::::::::
integrating

::::::::::::::
visual-linguistic

:::::::::
reasoning,

::::::::::::::
spatial-temporal

:::::::::::
transformers,

::::
and

::::::
feature

:::::
fusion

::
to

:::::::
discern

::::::::::
fine-grained

::::::::::
interactions

::::::::
between

:::::::::
modalities

:::
and

:::::::
provide

::::::
deeper

:::::::
insights

::::
into

::::::::
complex

::::::
events.

:::
The

:::::
CIIC

:::::::::
framework

::::
[53]

:::::
targets

::::::
visual

:::
and

::::::::
linguistic

::::::::::
confounders

::
in

::::::::::::::
encoder-decoder

::::::
models

::
to

::::::::::
disentangle

:::::
visual

::::::
features

::::
and

::::::
rectify

::::::::
linguistic

:::::
biases

:::::::
through

::::::::
structural

:::::
causal

::::::::::
modelling,

::::::::
enhancing

:::
the

::::::::
accuracy

:::
and

:::::::::
reliability

::
of

:::::
image

::::::::
captions.

2.2.2. Language Priors
Language priors utilize

::::::::
Language

::::::
priors

:::::
utilise

:
the semantic information encapsulated in words to enhance the

prediction of relationships. They aid in recognizing
::::::::::
recognising visual relationships by observing objects that are

semantically correlated. For instance, even if the co-occurrence of “child" and “kite" is infrequent in the training
data, the language prior from a more common example like “a child holding a toy" can help infer that a plausible
relationship between a child and a kite could be “holding". This is because language priors understand the semantic
context and use it to predict relationships that may not explicitly appear in the training data but are likely in the
real world. VRD model [33] detects visual relationships within an image by leveraging visual appearance and
language modules. The language module employs pre-trained word vectors (word2vec) to project the relationships
onto an embedding space where semantically similar relationships are close together. This allows the model to
infer less frequent relationships from similar, more common ones, effectively utilizing

:::::::
utilising language priors as

a source of common sense knowledge. DeepVRL [34] approaches the task of identifying visual relationships and
attributes as a sequential process, utilizing

::::::
utilising

:
language priors to progressively uncover object relationships and

attributes within an image. It builds a directed semantic action graph that encapsulates semantic associations between
object classes, attributes and predicates, using language priors. The system then employs a variation-structured
traversal across the action graph, creating an adaptive action set at each stage, contingent on the current state and
past actions. To

:::
An

::::::::::::::
ambiguity-aware

:::::
object

::::::
mining

:::::::
strategy

::
is

:::::::::::
implemented

::
to

:
address semantic ambiguity among

object categories, an ambiguity-aware object mining strategy is implemented
:
.
:::
Yu

::
et

::
al.

::::
[35]

::::::::
proposed

:::
the

::::::::
extraction

::
of

:::::::
symbolic

::::::::::
knowledge

::::
from

:::::::
external

::::::
textual

::::
data,

::::
such

::
as

:::::::::
Wikipedia,

:::
by

::::::
parsing

:::::::::
large-scale

:::
text

::::
data

::
to

:::::::
identify

:::
and

::::::
encode

::::::::::
relationships

:::::::
between

::::::
objects

::
to
::::::
inform

:::
the

::::::::::
relationship

:::::::::
prediction

:::::::
process.

:::
This

::::::::
symbolic

:::::::::
knowledge

::
is
::::
then

::::::::::
incorporated

::::
into

:
a
::::::
teacher

::::::::
network,

:::::
which

:::::
distils

::
it
::::
into

::
an

:::::::::
end-to-end

::::::
student

:::::::
network

:::
for

:::::::::
predicting

:::::::::::
relationships.

2.2.2. Knowledge Graphs
KGs serve as extensive knowledge bases that encode

:::
are

::::::::
structured

::::::::
databases

::::
that

:::::::
formally

::::::::
represent

:::::::::
real-world

::::::
entities

:::
and

::::
their

::::::::::::
interrelations,

:::::::::
effectively

::::::::
encoding the structure of the world and its relationships. They have been

employed as a form of prior
:::::::
complex

:::::::::::
relationships.

:::
As

:::::::
outlined

:::
in

::::
[54],

::::
KGs

::::
are

::::::
pivotal

::
in

::::::::
providing

:::::::::
structured

:::
and

:::::::::::
interpretable

::::::::::
information.

::
In

:::
the

::::::
context

:::
of

:::::
SGG,

::::
KGs

:::
are

::::::::::
instrumental

::
as
::::
they

::::::
supply

::::::::
essential common sense

knowledgeto assist in the generation of
:
,
:::::
aiding

::
in

:::
the

:::::::
creation

:::
of

::::
more

::::::::
accurate

:::
and

:::::::::::::
comprehensive scene graphs.

KGs used for the infusion of prior common sense knowledge in SGG are presented
:::
The

::::::::::
application

::
of

:::::
KGs

::
in

::::
SGG

::
is

:::::::
detailed in Table 3. By offering a rich source of common sense knowledge about how objects and entities

relate to each other, KGs significantly enhance the accuracy and completeness of SGG. For instance, a KG can
provide information that

:::
As

::
an

::::::::
example,

::
a

:::
KG

:::::
could

:::::::
contain

::::::
explicit

:::::::::::
relationships

:::::
such

::
as

:
"a bird is likely to be

found in a tree
::::
birds

:::
are

:::::
often

:::::
found

::
in

:::::
trees" , thereby allowing the SGG to infer this relationship even if it’s not

explicitly present in the training data.
::
or

:::::
"cars

:::
are

:::::::
typically

:::
on

::::::
roads,"

:::::::
thereby

:::::::
enabling

::::
the

::::
SGG

::::::
system

:::
to

::::
infer

::::
these

:::::::::::
relationships

::
in

:::::::
images,

::::
even

::
if

::::
such

:::::::
specific

::::::::
instances

:::
are

::::::
absent

::::
from

:::
the

:::::::
training

:::::::
dataset.

::::
This

:::::::::
integration

::
of

::::
KGs

::::
into

::::
SGG

:::::::
systems

:::::::
enriches

:::::
them

::::
with

:
a
:::::
level

::
of

:::::::::
contextual

::::::::::::
understanding

:::
that

:::::::::::
significantly

::::::::
improves

::::
their

::::::::::
performance

::
in

:::::
scene

::::::::::::
interpretation.

Khan et al. [36] employed CSKG, a heterogeneous KG, consolidated from seven different knowledge bases,
to generate expressive and semantically-rich scene graphs. The graph embeddings of object nodes were used to
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compute similarity metrics for scene graph refinement and knowledge enrichment. In IRT-MSK [37], the authors
leveraged multiple structured knowledge sources, specifically relational knowledge and common sense knowledge,
to encapsulate relationships between entities derived from images and to encode intuitive knowledge, such as “dog
can guard yard", respectively. Infusing prior common sense knowledge from Visual Genome and ConceptNet KGs
into the SGG process enhanced the accuracy and context awareness of the generated scene graphs. COACHER [38]
employed graph mining pipelines to model neighbourhoods and paths around entities in ConceptNet and integrates
them into the SGG framework. COACHER uses ConceptNet to generate common sense knowledge embeddings,
which are then used to enhance zero-shot relation prediction. It develops three types of integrators: neighbour, path,
and fused. The neighbour integrator generates common sense knowledge embeddings based on the neighbourhood
information of a node in ConceptNet, while the path integrator retrieves a set of paths connecting two entities and
learns a representation for each set of paths. The fused integrator combines the neighbour- and path-based common
sense knowledge by initializing

::::::::
initialising

:
the path-based knowledge with the neighbour-based knowledge.

GB-Net [39] leverages multiple KGs, i.e., ConceptNet, WordNet and Visual Genome, as sources of prior common
sense knowledge. The method operates in an iterative manner, circulating data within and between a scene graph and
a common sense graph, and enhancing their associations with each cycle. It sets up entity bridges by linking each
scene entity to the common sense entity that aligns with the label predicted by Faster RCNN, followed by message
dissemination among all nodes. It calculates the pairwise resemblance between every scene predicate node and every
common sense predicate node, identifying pairs with maximum similarity to link scene predicates to their respective
categories. This procedure is carried out for a predetermined number of iterations, with the final state of the bridge
dictating the category to which each node is assigned, leading to the formation of the scene graph. KBGAN [40]
used ConceptNet to retrieve and embed common sense knowledge for the refinement of object and phrase features
in SGG through an attention-based knowledge fusion mechanism.

::::::
Buffelli

::
et

:::
al.

::::
[41]

:::::::
encoded

:::::::
external

:::::::::
knowledge

::::
from

::::::::::
ConceptNet

:::
and

:::::::
training

:::::
facts

:::
and

:::::::
injected

::
it

:::
into

:::
the

::::::::::::
regularisation

::::::
process

:::
of

::::::
training

:::::
SGG

:::::::
models.

::::::
Herron

:
et
:::

al.
:::::
[55]

::::::::::
demonstrated

::::
the

:::::::::
application

:::
of

::::
Web

::::::::
Ontology

:::::::::
Language

::::::
(OWL)

:::
in

:::::
visual

:::::::::
reasoning

::
by

::::::::
enabling

:::
the

:::::::::::
representation

::
of

::::::
source

:::
and

::::::
ranges

::
of

:::::::::
predicates,

:::::::::
hierarchies

:::
and

::::::
inverse

:::::::::::
relationships

::::::
within

:::::::
datasets,

:::::
which

:::
can

:::
aid

::
in

::::
more

:::::::::::
sophisticated

::::::::
reasoning

::::
with

::::::::::
knowledge

::::::
graphs

:::
and

:::::::
facilitate

::::::
deeper

:::::::
infusion

::
of

::::::::
common

:::::
sense

:::::::::
knowledge

::
in

:::::
SGG.

Table 3
Utilization

:::::::
Utilisation of Knowledge Graphs for Infusing Common Sense Knowledge in SGG

Knowledge
Graph

Nature of Knowledge Dimensions Examples Methods
Employed

ConceptNet
[19]

Information about common objects,
activities, relations, etc., in text for-
mat

8M nodes, 36 relations &
21M edges

(book, used for, reading), (pen,
capable of, writing) [37–40]

:::::
[37–41]

Visual
Genome
[13]

Visual information about image at-
tributes, objects, and relations

3.8M nodes, 42k relations,
2.3M edges & 2.8M at-
tributes

(cat, on, mat), (man, holding,
umbrella)

[37, 39]

Wordnet [20] Lexical information about words,
concepts, relations, etc.

0.155M words, 10 relations
& 0.176M synsets

(dog, has part, tail), (reading,
part meronym, scanning)

[39]

CSKG [21] Diverse common sense knowledge
consolidated from seven distinct
sources

2.16M nodes, 58 relations,
6M edges

(ball, located near, goalpost),
(guitar, used for, playing music) [36]

:::::
[7, 36]

2.3. Neurosymbolic Integration

NeSy integration aims to combine neural and symbolic approaches to construct more powerful learning and rea-
soning approaches in AI. The neural approaches excel at identifying statistical patterns from data in raw form and
are not susceptible to noise in data

:::
[56]. However, these techniques are data-intensive and operate as black boxes,

making their decision-making processes difficult to interpret
:::
[57]. On the other hand, symbolic techniques excel at
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logical reasoning, offer high explainability and allow for the use of dynamic declarative languages for knowledge
representation

:::
[58]. However, they offer less trainability and can be brittle when faced with out-of-domain data

:::
[59]

:
.
::
In

:::::
scene

::::::::::::
understanding

::::
and

:::::
visual

:::::::::
reasoning,

::::::
NeSy

:::::::::
integration

:::
can

::::::
enable

:::::::
systems

::::
that

:::
not

:::::
only

::::::::
recognise

:::::::
complex

:::::
visual

::::::
scenes

:::
but

::::
also

:::::::
provide

:::::::
logical,

::::::::
traceable

::::::::::
explanations

:::
for

:::::
their

::::::::::::
interpretations,

::::::::
aligning

::::
with

:::
the

::::::::
principles

::
of

::::::::::
explainable

::
AI

::::
[60].

::::
The

::::::
ability

::
to

:::::
extract

::::
and

:::::
utilise

::::::::
compact,

::::::::::
interpretable

:::::::::
knowledge

:::::::::::::
representations

::::
from

:::::
neural

:::::::
models

:::::::
enhances

:::::
local

:::::::::::
explanations,

:::::::
offering

:::::
clarity

:::
on

::::::::::::::
decision-making

::::::::
processes

::::
[61].

:::::
NeSy

:::::::
systems

:::
thus

:::::
stand

::
at
::::

the
:::::::
forefront

:::
of

:::::::::
advancing

::
AI

:::::::
towards

::::::
being

::::
more

:::::::::::
semantically

::::::
sound,

:::::::::::
explainable,

:::
and

:::::::::
ultimately

::::
more

::::::::::
trustworthy,

::::::::::
particularly

::
in

:::::::::::
sophisticated

:::::
tasks

::::::::
involving

::::::
vision

:::
and

::::::::
language

:::
[4]. Given the complementary

strengths and weaknesses, the integration of neural and symbolic techniques is a logical advancement towards AI
approaches that are more robust, reliable and effective. A fine-grained classification of NeSy approaches with six
different types is provided in [22, 23]. However, given the relatively few NeSy studies in the field of scene under-
standing and visual reasoning, we have streamlined the classification within this domain. We categorize

::::::::
categorise

NeSy approaches into two types, loosely coupled and tightly coupled [22], based on the degree of integration be-
tween the symbolic and neural components.

2.3.1. Loose Coupling
In the context of loosely-coupled NeSy approaches , the

:::::::
Loosely

:::::::
coupled

:::::
NeSy

::::::::::
approaches

::::::
feature

:
a
:::::::

relative

:::::::::::
independence

:::::::
between

::::
their

:
symbolic and neural componentsoperate relatively independently, each adhering

:
.
::::
Each

::::::
adheres

:
to its own processes and methodologies. While they interact as required , their operations are not deeply

intertwined. This loose coupling
:
,
:::::::::
interacting

::
as

:::::::
required

:::::::
without

::::
deep

:::::::::::::
intertwinement.

::::
This allows each component

to leverage its own strengths , while also
:::::::
strengths

:::::
while

:
benefiting from the capabilities of the othercomponent.

In some loosely-coupled
::::::
loosely

:::::::
coupled

:
NeSy approaches, the neural and symbolic elements concentrate on

distinctyet
::::
focus

:::
on

:::::::
distinct,

:
complementary tasks within a large

:::::
larger

:
pipeline. They cooperate to accomplish

:::::::::
collaborate

::
to

:::::::
achieve the overall task, yet retain

::::::::::
maintaining the ability to function independently. This arrange-

ment harnesses
:::::::
combines

:
the advantages of both neural and symbolic components while preserving the autonomyof

each component when necessary. Such a setup proves
:::
their

:::::::::
autonomy.

::
It

:
is
:
particularly effective in handling complex

tasks that necessitate
:::::::
complex

::::
tasks

::::::::
requiring a blend of symbolic reasoning and neural learning. The

::
An

:::::::
example

::
is

::
the

:
NeSy Concept Learner (NS-CL) , proposed by Mao et al. [62], comprises

:::::::::
comprising a neural network designed

to learn
::
for

:::::::
learning

:
visual concepts and a symbolic module that processes symbolic programson the features of

visual concepts for the purpose of answering questions
::
for

::::::::::
processing

::::::::
symbolic

::::::::
programs. The symbolic module

furnishes feedback signals that facilitate the
:::::::
provides

::::::::
feedback

::::::
signals

::::::
aiding

:::
the

::::::
neural

::::::::
module’s gradient-based

optimization of the neural module
:::::::::::
optimisation.

::
In

::::::
several

::::::
loosely

::::::::
coupled

:::::
NeSy

::::::::::
approaches,

:::
the

::::::::::
components

::::::::
function

::::::::::
sequentially. The symbolic and neural

components function in a sequential chain of operations in several loosely-coupled NeSy approaches. The neural
component transforms the

:::
first

:::::::::
transforms raw input into a format that

:::::::::
processable

:::
by the symbolic componentcan

process. The symbolic component processes the transformed input and subsequently passes ,
::::::
which

::::
then

::::::::
processes

:::
this

:::::
input

:::
and

:::::
sends

:
its output back to the neural component for additional

:::::
further

:
processing. This method allows

for a
::::::::
sequential

::::::::
operation

::::::
allows

:::
the fusion of symbolic reasoning and neural processing capabilities, despite the fact

that each component largely maintains its own
:::::
while

::::::::::
maintaining operational independence. For example

:::::::
instance,

IRT-MSK [37] extracts knowledge-embedded semantic features from KGs to explore context information from
visual features in SGG, with the symbolic and neural components operating relatively independently. MotifNet
[31] uses a global context (symbolic) to inform each stage of

::::::::::
sequentially

::::::
inform

:
its predictions (neural)in a

sequential manner. The .
:::::
Here,

:::
the global context, represented via LSTMs, infuses symbolic knowledge into the neu-

ral component, enhancing its ability to make informed predictions
::::::::
prediction

::::::::::
capabilities. Khan et al. [36] proposed

a loosely-coupled NeSy approach
:::
[7]

:::::::
proposed

::
a
::::::
loosely

:::::::
coupled

::::::
NeSy

:::::::::
framework

:
for SGG, knowledge enrich-

ment
:
,
:

and downstream visual reasoning. This approach leverages the representational and reasoning strengths of
symbolic systems to represent images as scene graphs and supplement them with

:::::::
employs

::::::::
symbolic

:::::::::
approaches

:::
for

::::
scene

::::::::::::
representation

::::
and common sense knowledge . The neural modules employ the powerful learning capabilities

of deep learning to
:::::::::
enrichment.

::::::
Neural

::::::::
modules predict semantic elements in images and to process the enhanced

::::::
process

:::::::
enriched

:
scene graphs for downstream visual reasoning tasks. In this setup, the neural and symbolic modules

exhibit a degree of interdependence . The precision of the
::::::::::::::
interdependence

::
of

:::::::
modules

::
is

:::::::
evident:

:::
the

::::::::
accuracy

::
of
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scene graph elements predicted by the neural module significantly impacts the effectiveness of the scene graph

::::::
directly

:::::::
impacts

:::
the enrichment process, which in turn has a direct influence on

::::::
directly

::::::::
influences

:
the performance

of downstream reasoning tasks.

2.3.2. Tight Coupling
The symbolic and neural components

:
in

::::::
tightly

::::::::
coupled

:::::
NeSy

::::::::::
approaches

:
are deeply integratedwithin the

tightly-coupled NeSy approaches, leveraging the strengths of both symbolic and neural approaches
:::::::
domains

in a more unified way , potentially leading to improved
:::
for

::::::::
enhanced

:
performance and capabilities. In some

tightly-coupled NeSy approaches,
::::
This

:::::::::
integration

:::::
often

:::::::
involves

::::::::::::
incorporating symbolic rules or knowledge are

directly incorporated into the architecture or training regime of the
::
of neural networks. This means that the structure

of the neural network or the way it is trained is influenced by the
:::
The

::::::::
structure

::
of

:::::
these

::::::::
networks

::
or

::::
their

:::::::
training

::::::::::::
methodologies

::
is

::::::::
influenced

:::
by symbolic rules, leading to a deep integration of the

:::::::
resulting

::
in

:
a
::::
deep

:::::
fusion

:::
of sym-

bolic and neural components. This allows the neural network to leverage
::::::::
elements.

::::
Such

::::::::::
integration

:::::
allows

::::::
neural

:::::::
networks

::
to
::::::
utilise the reasoning capabilities of the symbolic rules while also benefiting from the learning capabil-

ities of the neural component
:::::
neural

::::::::::
components. Some recent works [40, 63]

:::
like

:::
Gu

::
et

:::
al.

::::
[40]

:::
and

::::::
Marino

::
et
:::

al.

::::
[63] employ GNNs to embed entities and relations from external knowledge bases , thereby enhancing

::
to

:::::::
enhance

performance in scene understanding and visual reasoning tasks. Moreover, several
::::::
Several VQA methods [64–68]

generate and execute symbolic programs, implemented as neural networks or fully differentiable operations, to
answer questions. In several tightly-coupled NeSy systems , symbolic knowledge is

::::::::
Symbolic

:::::::::
knowledge

:::
in

::::::
tightly

:::::::
coupled

::::::
NeSy

:::::::
systems

::
is
:::::

often
:

encoded into the distributed representation

::::::::::::
representations

:
of neural networks. This tight integration means that the data representation of the neural component

is directly impacted by symbolic knowledge. This configuration allows the neural component to harness the

:::::::::::
configuration

::::::
allows

:::::
neural

:::::::::::
components

::
to

:::::::
leverage

:
reasoning capabilities inherent in the symbolic knowledge ,

while simultaneously leveraging its own
::::::::
symbolic

:::::::::
knowledge

:::::::::
alongside

::::
their

:
learning capabilities. Such systems

are particularly useful in tasks necessitating
:::
This

::::::::
approach

::
is
:::::::::
beneficial

::
in

::::
tasks

::::::::
requiring

:
a deep understanding of

the data, as it enables the system to exploit both the
::::::
exploits

:
symbolic knowledge and the learning capabilities of

neural networks
:::::
neural

:::::::
learning. For instance, Li et al. [69] developed a hierarchical semantic segmentation network

using compositional relations across semantic hierarchies as additional training targets.
::::::::
Similarly, Zhou et al. [30]

designed a three-module system for SGG, infusing statistical probabilities into the modules for a tightly-coupled

:::::
tightly

:::::::
coupled

:
NeSy approach. COACHER [38] integrated common sense knowledge for zero-shot relation pre-

diction in SGG, embedding symbolic knowledge into the neural component’s distributed representation
:::::::::
distributed

:::::::::::
representation

:::
of

:::
the

:::::
neural

::::::::::
component. GB-Net [39] uses a graph-based neural network to refine connections be-

tween a scene graph and a common sense graph, exploiting the interconnected graphs’ heterogeneous structure

::::::::::::
heterogeneous

:::::::
structure

::
of

:::
the

::::::::::::
interconnected

::::::
graphs. KERN [32] incorporates statistical correlations between pair-

wise objects and visual relationships in deep neural networks
:::::
DNNs, using a structured KG to propagate messages

and explore object interactions. KBGAN [40] integrates symbolic knowledge from an external knowledge base into
neural components for SGG, refining object and phrase features.

The VRD model [33] integrates symbolic knowledge into CNNs to detect visual relationships from images.
DeepVRL[34] employs a directed semantic action graph to capture semantic relationships. It utilizes

::::::
utilises

:
a traver-

sal structure with variations over the action graph and a scheme for mining objects that is aware of semantic ambigu-
ity, which aids in distinguishing between object categories.

::::::
Buffelli

::
et
:::
al.

::::
[41]

::::::::
introduce

:
a
::::::::::::
regularisation

::::::::
technique

::
for

:::::
SGG

::::::
models

::::
that

::::::
embeds

::::::::
symbolic

::::::::::
background

:::::::::
knowledge

:::::::
encoded

::
in

:::::::::
first-order

::::
logic

::::
into

:::
the

:::::::
learning

::::::
process

::
of

:::::
neural

:::::
SGG

::::::
models

::::::
without

:::::::::
increasing

:::
the

::::::::::::
computational

::::::::
overhead.

:::
Yu

:
et
:::
al.

::::
[35]

:::
use

:
a
::::::
neural

:::::
model,

::::::::::
specifically

:::::
CNN,

::
to

::::::
extract

::::::
detailed

:::::
visual

:::::::
features

::::
from

:::::::
images,

::::::::::
particularly

:::::::
focusing

::
on

:::
the

:::::::::::
relationships

:::::::
between

:::::
object

:::::
pairs.

::::
This

:::::
neural

::::::::::
processing

::
is

::::
then

::::::::::::
synergistically

:::::::::
combined

::::
with

::::::::
symbolic

::::::::::
knowledge

::::::::
extracted

::::
from

::::::::
extensive

::::
text

:::
data

:::::::
sources

:::
like

::::::::::
Wikipedia.

:::
The

:::::::::
integration

::::::
occurs

::::::
within

::::::
another

::::::
neural

::::::
model,

:::::
where

:::
the

::::::
visual

:::::::
features

:::
and

:::
the

::::::
distilled

::::::::
symbolic

::::::::::
knowledge

:::::
inform

:::::
each

::::
other

::
to

::::::
predict

::::::
visual

::::::::::
relationships

:::
for

:::
the

:::::::::
generation

::
of

::::::::
symbolic

:::::
scene

::::::
graphs.

::::::
Herron

::
et

:::
al.

::::
[70]

:::::::
highlight

::::
the

:::::::::
importance

::
of

::::::::::
combining

::::::
explicit

::::::::
symbolic

::::::::::
knowledge

:::::::::::
representation

::::
and

::::::::
reasoning

:::::::::
machinery

::
of

::::::::::
OWL-based

:::::
KGs

::::
with

::::
deep

:::::::
learning

:::
in

:::::
NeSy

:::::
visual

:::::::::
reasoning.

::::::::::
OWL-based

::::
KGs

:::::::
support

:::::::::
knowledge

:::::::::
embedding

::::
into

:::::::
vectors,

:::::
which

::::
can

::::
also

:::::
guide

:::::
neural

:::::::
learning

:::
via

::::
KG

::::::::::
completion,

:::::::
support

:::::::::
knowledge

:::::::
infusion

::::
into

:::::
DNNs

::::
for

::::::::
improved

::::::::
learning,

::::
and

::::::
enable

::::::::
symbolic

::::::::
reasoning

::::
and

::::::::::
formalised

::::::::
semantics

:::
in

:::::
scene
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::::::::::
graph-based

:::::
visual

:::::::::
reasoning.

::::::::::
Hyperbolic

:::::::
methods

:::::::
enhance

::::::
visual

::::::::
reasoning

:::
in
::

a
:::::::::::::
tightly-coupled

:::::
NeSy

::::::::
approach

::
by

:::::::
utilising

:::
the

::::::::
Poincaré

::::
ball

::::::
model

::
to

::::::
encode

:::::::::::
hierarchical

::::::::
structures

::::
with

::::::::
minimal

::::::::
distortion

::::
[71]

:
.
:::::
Atigh

::
et
:::

al.

::::
[72]

:::::::
leverage

:::::::::
hyperbolic

::::
space

:::
for

:::::::::
pixel-level

::::::
image

:::::::::::
segmentation,

::::::::::::
reformulating

::::::::::
multinomial

::::::
logistic

:::::::::
regression

::
to

:::::::
optimise

:::::::::::
segmentation

::
in

:
a
::::::::::::::::
lower-dimensional,

::::::::::::
hierarchically

::::::::
structured

::::::::::
embedding

:::::
space.

::
In

:::::::::
structured

:::::::::
multi-label

:::::::::
prediction,

:::::
Xiong

::
et

::
al.

::::
[73]

::::::
employ

:::::::::
hyperbolic

::::::::
Poincaré

::::::::::
hyperplanes

::
as

:::::
linear

:::::::
decision

:::::::::
boundaries,

::::::::
encoding

::::::
logical

::::::::::
relationships

::::
like

:::::::::
implication

:::
and

:::::::::
exclusion.

::::
This

::::::::
geometric

::::::::
approach

::::::
ensures

::::::
logical

::::::::::
consistency

::
in

::::
tasks

::::
like

:::::
image

::::::::
annotation

::::
and

:::
text

::::::::::::
categorisation.

:

3. Downstream Visual Reasoning

Scene graphs are widely utilized
::::::
utilised in downstream visual reasoning tasks, including VQA, image caption-

ing, MEP, image retrieval, and image generation, as shown in Figure 3. The efficacy of these downstream tasks is
determined by the quality and expressiveness of the generated scene graphs. This section provides an overview of
visual reasoning methods based on scene graphs and prior common sense knowledge.

matched events image elements

Image Generation

caption elements

Image Captioning

"the woman is in a
tennis court and she is

holding a racket"
Visual Question

Answering

answer

Q: What is the woman
holding?
A: racket

query events

Image

woman

racket

Scene Graph

in

in front of
holding

with

with

on

tennis court

queried words

Image Retrieval

Query: "woman in
tennis court"  Multimedia Event

Processing

question

relevant images

Fig. 3. An overview of the downstream visual reasoning tasks of scene graph generation, including VQA, image captioning, MEP, image retrieval,
and image generation.
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3.1. Visual Question Answering

Models for VQA predict the most appropriate
::::
VQA

:::::::
models

::::
aim

::
to

::::::::
generate

:::::::
accurate

:
responses to queries

regarding
::::
about

:
visual scenes by leveraging

:::::::::
harnessing

:
multimodal features, semantic relationships in scene

graphs
:::::
within

::::::
scene

:::::::
graphs,

:
and factual knowledge. For instance

::::::
example, Zhang et al. [74] suggested the

incorporation of scene graph structural data into GNNs, utilizing it as a basis for VQA . In a parallel work
::::::::
enhanced

:::::
Graph

::::::
Neural

::::::::
Networks

:::::::
(GNNs)

:::
by

:::::::::
integrating

::::::::
structural

::::
data

::::
from

:::::
scene

::::::
graphs

:::
for

:::::
VQA

:::::
tasks.

::::::::
Similarly, Ziaee-

fard et al. [75] presented a VQA methodology based on GATs, which encodes scene graphs in conjunction with
external knowledge derived

:::::::
proposed

::
a
:::::
VQA

::::::::
approach

:::::
using

::::::
Graph

::::::::
Attention

:::::::::
Networks

::::::
(GATs)

::::
that

:::::::::
synergises

::::
scene

::::::
graph

:::::::
encoding

:::::
with

:::::::::
knowledge

:::::::
sourced from ConceptNet. Wu et al. [76] proposed a method that combines

image content representation
::::::::
combined

:::::
image

:::::::
content

:
with a common knowledge base for image-based question

answering, but it lacks explicit reasoning.
:::::
though

:::::
their

::::::
method

::::
does

:::
not

::::::::
explicitly

:::::
focus

:::
on

::::::::
reasoning.

:::
On

:::
the

:::::
other

::::
hand,

:
Narasimhan et al. [77] developed a retrieval method based on learning, which embeds both facts and pairs of

questionsand imagesinto a common space, thereby converting visual concepts into a vector in proximity to pertinent
facts.

::::::
created

:
a
:::::::::::::

learning-based
:::::::
retrieval

:::::::
method,

::::::::::
embedding

:::::::::
questions,

::::::
images,

::::
and

::::
facts

::::::::
together,

:::::::
linking

:::::
visual

:::::::
concepts

::::
with

::::::
related

:::::
facts.

:::::::::::
ConceptBert,

::::::::::
introduced

::
by

:
Garderes et al. presented ConceptBert [78], a model that

amalgamates
:::
[78]

:
,
::::::
merges

:
pre-trained image and language features with embeddings from a knowledge graph ,

eliminating
::::::::
knowledge

:::::
graph

:::::::::::
embeddings,

::::::::
bypassing

:
the need for external knowledge annotationsor search queries.

Shevchenko et al. [48] put forward a method that incorporates information from a knowledge base into a transformer
for

::::::::
employed

::
a
::::::::::
transformer

::::
that

::::::::
integrates

::::::::::
knowledge

::::
base

::::::::::
information

::::
for

:::::::
aligning

:
visual and language data,

ensuring alignment between the learned representation and the knowledge embedding. Zhu et al. [79] developed

::::::
crafted Mucko, a model designed for

:::::
adept

::
at multilayer cross-modal knowledge reasoningthat builds

:
,
:::::::
forming

a multimodal heterogeneous graph and employs a modality-aware heterogeneous graph convolutional network for
the capture of evidence

::
for

::::::::
evidence

::::::
capture. Yu et al. [80] introduced a model that deciphers images

::::::
devised

::
a

:::::
model

:
using a multimodal knowledge graph and a memory-based recurrent network for cross-modal reasoning,

representing knowledge across different modalitiesand selecting knowledge relevant to the problem for predicting
answers

:::::
adept

::
at

::::::::
handling

:::::::::
knowledge

::::::
across

::::::
various

:::::::::
modalities. Anderson et al. [81] used

::::::
utilised Faster R-CNN

to propose
::
for

:::::::::
proposing

:
image regions and integrated bottom-up and top-down attention mechanisms to enhance

the interpretability of attention weights and unified visual-linguistic understanding for VQA.
:::::::::::
incorporated

:::::::
attention

::::::::::
mechanisms

:::
for

::::::::
improved

::::
VQA

:::::::::::::
interpretability.

::::
The

::::::::
LXMERT

:::::::::
framework

:::
by Tan et al. [49] proposed the LXMERT

framework employing
::::::
employs

:
a large-scale Transformer model with three encodersfor scene graph-based VQA

based on the understanding of
:::::
triple

::::::::
encoders,

:::::::
focusing

:::
on

::::::::::::
understanding

::::
both

:
visual concepts and language se-

mantics, as well as, intra- and cross-modal relationships. .
::::
The Meta Module Network (MNM) [82] addresses the

scalability and generalizability in VQA
::::::
MMN)

::::
[82]

:::::
brings

:::::::::
scalability

::::
and

:::::::::::::
generalisability

::
to

:::::
VQA,

:
using a meta-

morphic meta module , which dynamically morphs into diverse instance modules, offers flexibility and allows
for complex visual reasoning, while preserving the same model complexityas the function set expands

:::
that

::::::
adapts

::
to

::::::
diverse

::::::::
instances

:::::::
without

:::::::::
increasing

:::::
model

::::::::::
complexity. MDETR [50] is an end-to-end modulated detectorthat

leverages
:
,
::::::::
leveraging

:
a transformer-based architecture to fuse

::
for

:::
the

:::::::::
early-stage

::::::
fusion

::
of

:
image and text modal-

itiesat an early stage for efficient extraction of ,
:::::::::

efficiently
:::::::::
extracting visual concepts from the free-form text in

multi-modal reasoning systemsincluding VQA.
:
.
::::::
Lastly,

:
Zhang et al. [83] performed visual reasoning for VQA

based on
::::::
applied their object detection model designed for visual-language tasks with

::
to

:::::
visual

:::::::::
reasoning

::
in

:::::
VQA,

::::::::
achieving richer visual representations of objects and concepts.

Among the
::::
Over

:::
the

::::
past

:::
few

::::::
years,

::::::
several scene graph-based VQA methods ,

:::
have

::::::::
emerged.

:
Hudson et al. [66]

presented
:::::::::
introduced a visual reasoning approach based on

::::::
method

:::::
using Neural State Machines (NSM)integrating ,

:::::
which

::::::
blends visual and linguistic inputs into semantic concepts via

::::::
through a probabilistic scene graphfor

:
,
:::::::
enabling

sequential reasoning and inference. Zhang et al. [74] embedded
:::
took

::
a
:::::::
different

:::::
route

::
by

::::::::::
embedding the structural

features of scene graphs into a GNN for downstream VQA.
:::::::
Building

::
on

::::
this,

:
Yang et al. [84] proposed

::::::::
developed

::
the

:
Scene Graph Convolutional Network (SceneGCN)that incorporates

:
,
:::::::::
integrating

:
object properties and semantic

relationships into
:::
for a structured scene representation for enhanced VQA via

:::
that

::::::
boosts

:::::
VQA

:::::::
through visual con-

text and language priors. Graphhopper [85] addresses the challenge of performing
::::::::
Exploring

:::::::
further,

:::::::::::
Graphhopper

::::
[85]

:::::
tackles

:::
the

::::::::::
complexity

::
of

:
multi-hop K reasoning over complex visual scenes to predict reasoning paths that
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lead to the answer
::::::
deduce

::::::::
reasoning

:::::
paths

::::::
leading

::
to
:::::::
answers

:
in VQA.

:::
The

:
Dual Message-passing enhanced GNN

(DM-GNN) [86] encodes multi-scale scene graph information into two diversified graphs focused
::::::
distinct

::::::
graphs

:::::::
focusing on objects and relations, and uses a dual structure to encode them to achieve .

::::
This

::::
dual

::::::::
structure

:::::::
achieves

a balanced representation of object, relation, and attribute features in VQA. The
:::::::
Finally,

:::
the Scene Graph Refine-

ment network (SGR) [51] propose
::::::
presents

:
a transformer-based refinement network to enhance

:::::::
network

::
to

:::::
refine

object and relation feature learning in VQA, utilizing .
::
It

::::::::
leverages question semantics to jointly learn multimodal

representations and select
:::::
selects

:
the most relevant relations for better

::::::::
improved question answering.

3.2. Image Captioning

Scene graphs have been employed
:::::::
become

:
a
::::::
pivotal

:::
tool

:
in image captioningtechniques to generate effective scene

descriptions , overcoming the limitations of relying solely on
:
,
::::::::
enhancing

:::::
scene

::::::::::
descriptions

:::::::
beyond

::
the

:::::::::::
conventional

vision-language features. The Abstract Scene Graph (ASG) [87] approach , for instance, encodes the intentions of
users

:::::::
approach

:::
by

:::::
Chen

::
et

::
al.

:::::
[87]

::::::
notably

::::::::
integrates

::::
user

::::::::
intentions

:
and semantic information into scene graphs,

facilitating the creation of diverse and desired
:::::
paving

:::
the

::::
way

:::
for

::::::
diverse

:::
and

::::::::
accurate text descriptions of scenes.

The SMP method [15] generates scene graphs based on
::::::::
Similarly,

:::
the

:::::
SMP

::::::
method

:::
by

::::::
Zhang

::
et

::
al.

:::::
[15]

:::::::
leverages

the saliency of visual relationships , which are then utilized for enhanced
::
in

:::::
scene

:::::
graphs

:::
to

:::::
enrich

:
caption genera-

tion. Goel et al. [88] proposed that image captioning models could be improved by integrating prior knowledge
::
in

:::::
image

:::::::::
captioning

::::::
models

:
through conditional latent topic attention and leveraging

:::
used

:
the semantic and syntactic

structure of captions in regularization. The methods yield
::
for

::::::::::::
regularisation.

:::::
This

:::::::
approach

::::
has

:::
not

::::
only

::::::::
produced

more human-like captions and significant improvements on the MSCOCO dataset, even in low data situations. The
techniques are applicable to other vision tasks

::
but

::::
also

:::::::
marked

:::::::::
significant

::::::::::::
advancements

:::
on

:::
the

::::::
COCO

:::::::
dataset,

::::::::
especially

::
in

::::::::
scenarios with limited data , indicating their potential for improving generalization

::::::::
availability. The R-

SCAN model [89] explored
::
by

::::
Lee

::
et

::
al.

::::
[89]

:::::
stands

:::
out

:::
for

:::
its

::::
focus

:::
on learning visual relationship features in SGG

for vision-and-language tasks and proposed
:::
and

::::::::
proposing

:
pre-training SGG models with

::::::
relevant

:
visual relation-

ship datarelevant to the scene. Liao et al. [90] proposed a
:::::::
ventured

:::
into

:::
the

:::::
realm

:::
of 3D Scene Graph-based Change

Captioning (SGCC)model to improve ,
::::::
aiming

::
to
:::::

boost
:
object location accuracy in change captioning tasks. Wu et

al. [91] introduced a method incorporating
:::
that

:::::::::
integrates high-level visual concepts and external knowledge into

the
:
a
:
deep learning cascade comprising

:
of

:
CNN and RNNfor enhanced ,

::::::::
resulting

::
in

:::::::::
significant

::::::::::::
improvements

::
in

image captioning and VQA performance. Yu et al. [92] developed a
::::
took

:
a
::::
step

:::::
further

::::
with

:::
the

:
3D-SceneCaptioner,

a point clouds-based image captioning technique , which generates more accurate captions by fully utilizing the
useful

:::
that

::::::::
leverages

:::
the

::::
rich

:
semantic information in point clouds

::
for

:::::::::
generating

:::::
more

::::::
precise

::::::::
captions. Zhang

et al. [93] improved the image captioning performance of a transformer by leveraging
:::::::
enhanced

:::
the

:::::::::::
performance

::
of

:::::::::::
transformers

::
in

:::::
image

::::::::::
captioning

::
by

::::::::::::
incorporating

:
a knowledge graph and augmenting maximum likelihood

estimation with a Kullback-Leibler divergence term. A recent study [94] demonstrated that
:::::
Some

:::::
recent

::::::
works

::::::
[7, 94]

:::::::
highlight

:::
the

:::::::
superior

:::::::::::
performance

::
of

:
image captioning methods utilizing information extracted

:::
that

:::::
utilise

:::::::::
information

:
from knowledge graphs significantly outperformed the methods relying entirely on image information.

:::
over

:::::
those

:::::::
relying

:::::
solely

::
on

::::::
image

::::
data.

::::
The

:::::::::
versatility

::
of

:::::
these

:::::::::
techniques

::::::
extends

::
to
:::::

other
:::::
tasks

:::
that

::::::
suffer

::::
from

:::
data

:::::::
scarcity,

::::::::::
showcasing

::::
their

::::::::
potential

::
to

:::::::
enhance

::::::::::::
generalisation

:::
and

:::::::::::::
expressiveness.

3.3. Other tasks

NeSy visual semantic models have found
:::::
useful

:
applications in the representation of multimedia streams for

real-time multimodal event processing in the Internet of Multimedia Things (IoMT) [95, 96]. These models utilize
deep neural networks

:::::
blend

::::::
DNNs for object and attribute detection , and symbolic rules are applied to discern

::::
with

:::::::
symbolic

:::::
rules

::
to

:::::::::
understand spatiotemporal relations among the objects. These interactions are crucial

::::::
objects.

::::
This

:::::::::
integration

:
is
::::::
pivotal

:
for correlating high-level events queried by users. In the context of

::
in

:::::::
response

::
to
::::
user

:::::::
queries.

::
In image retrieval, scene graphs serve to explicitly articulate the semantics and structured data of images, enabling
efficient retrieval of images from extensive

::::::::
transform

:::
the

::::
way

:::
we

::::::::
articulate

:::::
image

::::::::
semantics

::::
and

::::::::
structure,

:::::::
enabling

::::
more

:::::::
efficient

::::::::
searches

::
in

::::
vast

:
databases based on their contents

:::::
image

:::::::
content. Schroeder et al. [97] introduced

::::::::
developed

:
Structured Query-based Image Retrieval (SQIR), a method that represents visual relationships in

:::::
which
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:::::::
employs scene graphs as directed subgraphs . This approach facilitates the task of graph matching in image retrieval
using

::
to

:::::::::
streamline

:::::
graph

::::::::
matching

:::
for

::::::
image

:::::::
retrieval

:::::::
through

:
structured queries and scene graph embeddings.

:::::::::
Meanwhile,

:
Ward et al. [98] proposed

::::
have

::::
taken

:
a NeSy approachbased on deep learning and knowledge graphsto

guide the colourization
:
,
:::::::::
combining

::::
deep

::::::::
learning

::::
with

:::::::::
knowledge

:::::::
graphs,

::
to

::::::::::
ingeniously

:::::
guide

:::
the

:::::::::::
colourisation

of black-and-white images, leveraging object classification and contextual knowledge to determine accurate colours
for .

:::::::::
Compared

::
to

:::
the

:::::::::::
conventional

:::::::::::
colourisation

:::::::
methods,

::::
this

:::::::
approach

:::
not

::::
only

::::::::
classifies

::::::
objects

:::
but

::::
also

:::
taps

::::
into

::::::::
contextual

::::::::::
knowledge

:::
for

::::::::
accurately

::::::::
coloring both simple and complex scenes. Compared to

:::::
Unlike

:
textual scene

descriptions, scene graphs have proven to be more efficient and adaptable
:::::::
emerged

::
as

::
a

::::
more

::::::::
dynamic

:::
and

:::::::
scalable

::::::
solution

:
for image generation, especially when the number

:::::::
excelling

::
as

:::
the

::::::::::
complexity of objects and relationships

increase [99]. Scene graphs, when
:::::
grows

::::
[99]

:
.
::::::
Further

:::::::::
enhancing

::::
their

::::::
utility,

:::::
scene

::::::
graphs infused with common

sense knowledge , have been utilized in a scene graph-based image generationnetwork, leading to the creation of
more realistic images [36].

:::
have

::::::
paved

:::
the

:::
way

:::
for

:::::
more

::::::
lifelike

:::::
image

::::::::::
generation,

::
as

::::::::
evidenced

:::
by

::::
Khan

::
et
:::
al.

::::
[36].

:::::
Lastly,

:
Gu et al. [40] made use of ConceptNet

::::::::
harnessed

::::::::::
ConceptNet

::::::
within

::
an

:::::::::::::
attention-based

:::::
RNN

:::::::::
framework to

refine objects and phrases based on prior
::::
with

:
common sense knowledge in an attention-based RNN technique for

the reconstruction of
::
for

::::::::::::
reconstructing

:
images from scene graph representations.

4. Performance Evaluation

In this section, we present the benchmark datasets and standard metrics used for the performance evaluation of
SGG and visual reasoning methods.

4.1. Scene Graph Generation

The knowledge-based SGG approaches and common datasets used for evaluation are summarized
::::::::::
summarised in

Table 4 and Table 5, respectively.
:::::
Table

:
4
::::::
details

::::
each

:::::
SGG

::::::::
technique,

::::::::
including

:::
the

:::::
DNN

:::::::::::
architecture,

:::::::::
knowledge

::::::
source,

:::
and

:::
the

::::
type

::
of

:::::
NeSy

::::::::::
integration,

::
as

:::::::::
discussed

::
in

::::::
Section

::
2.
:::::::::::
Additionally,

::
it
::::::::::
summarises

::::
their

:::::::::::
performance

::::::
metrics

::
as

:::::::
reported

::
in

:::::::
existing

::::::::
literature.

:
The benchmark dataset frequently employed for SGG evaluation is Visual

Genome [13]. The standard metrics used to evaluate relationship prediction in SGG include Recall@K (R@K),
mean Recall@K (mR@K), and zero-shot Recall@K (zR@K).

– R@K is the proportion of instances where the correct relationship is among the top K
::::
topK

:
relationship pre-

dictions with the highest confidence [33]. This metric requires not only accurate relationship label prediction
but also a high confidence score.

– mR@K is the average of R@K values, each computed separately for every relationship category. This metric is
designed to reduce evaluation bias towards frequently occurring relationships [32, 100].

– zR@K is similar to R@K, but it is only computed for relationships that do not appear in the training dataset
[33, 101].

4.2. Downstream Reasoning Tasks

4.2.1. Visual Question Answering
The commonly used datasets for scene graph-based VQA include GQA [102], MS COCO [107], and Visual

Genome [13]. The GQA dataset [102] is the standard dataset for scene graph-based VQA. It contains 113,018
images, 22 million questions, 1702 object classes and 310 relationship types, with an 80-10-10 split for training,
validation and testing. The “binary" type questions are designed to have a ‘yes’ or ‘no’ answer, for example, ques-
tions that involve checking the presence, absence, or relationship between objects in the image. On the other hand,
the “open" type questions require a more elaborate answer that needs deeper reasoning about the semantics of the
visual content, usually involving identifying, describing, or explaining objects and relationships in the image. Apart
from the standard accuracy metric, the new performance metrics introduced in GQA are more robust to informed
guesses as they need a deeper semantic understanding of questions and visual content. The following performance
metrics [102] are used to quantify the reasoning capabilities of the VQA methods:



M.J. Khan et al. / A Survey of Neurosymbolic Visual Reasoning with Scene Graphs and Common Sense Knowledge 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 4
State-of-the-art Knowledge-based SGG methods evaluated using standard metrics on Visual Genome dataset

Method
Deep Learning
Architecture

Common Sense
Knowledge Source

Neurosymbolic
Integration

SGG Performance
R@50/100 mR@50/100 zR@50/100

SGG-CKI [36] CNN and LSTM CSKG Loose Coupling 35.5/39.1 10.9/12.6 -/-

DSGAT [30] CNN and GAT Statistical Prior Tight Coupling 28.8/32.9 8.9/11.8 -/-

IRT-MSK[37] CNN and GCN ConceptNet and Vi-
sual Genome

Loose Coupling 27.8/31.0 -/- -/-

COACHER[38] CNN and LSTM ConceptNet Tight Coupling -/- -/- 19.3/22.2
MotifNet [31] CNN and LSTM Statistical Prior Loose Coupling 27.2/30.3

(22.6/25.9∗)
5.7/6.6
(5.2/6.3∗)

19.0/21.9

GB-Net [39] CNN and GNN ConceptNet, Word-
Net and Visual
Genome

Tight Coupling 26.4/30.0 6.1/7.3 -/-

KERN [32] CNN and GNN Statistical Prior Tight Coupling 27.1/29.8 6.4/7.3 -/-

KB-GAN [40] CNN and GRU ConceptNet Tight Coupling 13.6/17.6 -/- 18.1/21.1

DeepVRL[34] CNN and DQN Language Prior Tight Coupling 13.3/12.6 -/- 6.3/7.1

VRD [33] CNN Language Prior Tight Coupling 0.3/0.5 -/- -/-
∗on GQA dataset [102]

Table 5
Datasets for Evaluation of SGG and Downstream Reasoning Methods

Dataset Size
Annotations for Scene Graph Generation Annotations for Downstream Reasoning

External Knowledge
Object categories Relationship categories Image Captions Question-Answer Pairs

Visual Genome [13] 108K images 33.8K 42K ✓ ✓ ✗

VG150 [103] 88K images 150 50 ✓ ✓ ✗

VG200 [104] 99K images 200 100 ✓ ✓ ✗

VG80k [105] 100K images 53K 29K ✓ ✓ ✗

VG-MSDN [106] 95K images 150 50 ✓ ✓ ✗

MS COCO [107] 330K images 80 – ✓ ✓ ✗

Flickr30K [108] 30K images – – ✓ ✗ ✗

GQA [102] 113K images 1.7K 310 ✗ ✓ ✗

VQA-v2 [109] 204K images – – ✗ ✓ ✗

VCR [110] 110K images – – ✗ ✓ ✗

KB-VQA [111] 700 images – – ✗ ✓ ✓

FVQA dataset [112] 2190 images – – ✗ ✓ ✓

OK-VQA [113] 14K images – – ✗ ✓ ✓

KRVQA [114] 33K images – – ✗ ✓ ✓

VRD [33] 5K images 100 70 ✗ ✗ ✗

::::::::
NeSy4VRD

:::
[55]

::
5K

:::::
images

::
109

:
71

:
✗

:
✗

:
✗

– “Accuracy" (Top-1
:::::::
Top − 1) is the fraction of times the predicted answer with the highest probability matches

the groundtruth; it is separately calculated for binary and open questions.
– “Consistency" measures the ability to answer multiple related questions consistently, indicating the level of

understanding of the semantics of a question within the scene.
– “Validity" evaluates whether an answer aligns with the scope of the question, reflecting the ability to compre-

hend the question.
– “Plausibility" measures if an answer is reasonable within the context of the question and in line with real-world

knowledge.
– “Distribution" (lower is better) checks the match between the distributions of predicted answers and

groundtruth, showing the ability to predict the less frequent answers in addition to the common ones.
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There are several knowledge-based datasets available for VQA. The KB-VQA dataset [111] evaluates the ability
of a VQA model to answer questions requiring external knowledge. It comprises 2,402 questions generated from
700 MS COCO images, each question falling into one of three categories: visual, common-sense, or KB-knowledge.
The FVQA dataset [112] pairs questions and answers with supporting facts in a structured triplet format, using a
knowledge base built from DBpedia [115], WebChild [116, 117] and ConceptNet [19]. It includes 2,190 images,
5,286 questions, and 193,449 facts, with questions categorized

:::::::::
categorised

:
by visual concept type, answer source,

and supporting knowledge base. The OK-VQA dataset [113], comprising 14,031 images and 14,055 questions,
requires reasoning based on uninstructed knowledge, unlike fact-based VQA datasets like KB-VQA and FVQA.
Questions are categorized

:::::::::
categorised

:
into one of 10 knowledge categories, or "Other" if they don’t fit into any

specific category. The KRVQA dataset [114], the first large-scale set requiring knowledge reasoning on natural
images, includes 32,910 images, 157,201 question-answer pairs, and 194,449 knowledge triplets. Questions are
categorized

:::::::::
categorised by reasoning steps and knowledge involvement, and the dataset is built on the scene graph

annotations of the Visual Genome dataset [13] and the knowledge base of
::
the FVQA dataset [112]. Although these

datasets contain external knowledge to some extent, KB-VQA [111] and FVQA [112] have insufficient size and
annotations for comprehensive visual reasoning and all these datasets lack scene graph annotations, ignoring the
structural and relational features of visual concepts that are crucial for visual reasoning.

4.2.2. Image Captioning
The performance evaluation of scene graph-based image captioning methods is usually based on MS COCO

[107], Flickr30k[108], and Visual Genome [13] datasets. Various metrics are used to assess the quality of the gen-
erated image captions, each focusing on different aspects.

– The BLEU score [118], originally developed for machine translation, measures the n-gram precision between
sentences, considering n-grams up to a length of four. It is generally more suitable for comparing entire corpora
rather than individual sentences.

– The METEOR score [119], another metric from the machine translation field, emphasizes
:::::::::
emphasises

:
the recall

of matching unigrams from the candidate and reference sentences. It accounts for word alignment in their exact
form, stemmed form, and semantics, making it particularly effective for corpus-level comparisons.

– The ROUGE score [120], initially designed for text summarization
::::::::::::
summarisation, and its variant ROUGE-L

are frequently used in caption generation. ROUGE-L identifies the longest subsequence of tokens in the same
relative order, potentially with other tokens in between, that exists in both the candidate and reference caption.

– The CIDEr score [121], specifically created for caption generation evaluation, calculates the cosine similar-
ity between the Term Frequency-Inverse Document Frequency (TF-IDF) weighted n-grams in the candidate
caption and the group of reference captions linked with the image. It considers both precision and recall.

– The SPICE score [122], the most recent evaluation metric, correlates best with human judgements and is
particularly relevant for scene graph-based image captioning evaluation. The SPICE score considers matching
tuples retrieved from the candidate and reference scene graphs. As a result, it favours semantic information
over text fluency and more closely mirrors human judgment.

5. Challenges and Prospects

In this section, we present the main challenges faced by the existing knowledge-based SGG and visual reasoning
methods, as well as future directions for addressing the challenges.

5.1. Contextual Relevance of Knowledge

Common sense knowledge has been shown to improve the accuracy and expressiveness of SGG and visual rea-
soning [6]. However, KGs, which are often used as a source of this common sense knowledge, have their own
limitations, especially when it comes to understanding the context of a specific scene. KGs may not always supply
contextually appropriate information about visual concepts in a specific scene

:::::
either due to their inherent contextual

limitations [123]
:
or
::::
lack

::
of

::::::
formal

:::::::::
semantics

:::
[70]. For example, while a KG might correctly identify that birds "fly"
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and fish "swim," it might struggle in a scene where a bird is depicted as "swimming" in water after a dive for fish.
The KG might not provide the most contextually appropriate information in such cases, leading to potential inac-
curacies in the scene graph. Similarly, language priors and statistical priors can also have contextually limited or
incorrect knowledge due to their inherent limitations [6]. Despite efforts to infuse relevant knowledge based on the
semantic and structural similarity of concepts, the contextual relevance of external knowledge often remains over-
looked. This results in the infusion of irrelevant knowledge, thereby restricting the contextual reasoning capability
in downstream visual reasoning tasks. Moreover, current evaluation methods for SGG and downstream reasoning
tasks do not assess directly

::::::
directly

::::::
assess the accuracy and relevance of this external knowledge.

These shortcomings underscore the need for new evaluation metrics capable of assessing the quality of knowl-
edge infusion based on the proportion of accurate and contextually relevant knowledge integrated into neural net-
works. Additionally, the use of context-aware approaches [124, 125] can ensure that only relevant and contextually
valid knowledge is added during the infusion process, leading to improved downstream visual reasoning. Future
research in this area could explore approaches with feedback mechanisms [126], adaptive thresholds [127], and
domain-specific knowledge [128]. For instance, feedback mechanisms can dynamically adjust the knowledge in-
fusion process based on the performance of downstream tasks, ensuring that the knowledge remains relevant and
useful. Adaptive thresholds can help fine-tune the amount and type of knowledge infused based on the specific re-
quirements of the scene or downstream task at hand.

::::
KGs

::::
with

::::::
formal

::::::::
semantics

:::::
[70]

:::
have

:::
the

::::::::
potential

::
to

:::::::
enhance

::::::::
contextual

:::::::::
reasoning

:::::
using

::::::::::
relationships

::::
and

:::::::::
hierarchies

::::::::
between

::::::
objects

:::
and

::::::::::
predicates. Furthermore, integrating

domain-specific knowledge can address specialized
::::::::
specialised

:
requirements within visual reasoning, ensuring that

the knowledge is both broad-based for general contexts and tailored for specific scenarios. Such approaches will
ensure the infused knowledge is contextually relevant in addition to being semantically and structurally related to
the scene, leading to more reliable and precise scene representation and visual reasoning.

5.2. Bias and Generalizability
::::::::::::
Generalisability

A main cause of the limited performance of existing SGG methods is the long-tailed distribution of crowdsourced
datasets [5], restricting the SGG methods from generalizing

::::::::::
generalising to rare visual relationships. Many relation-

ship predicates that carry significant meaning are underrepresented, making it challenging for SGG methods to learn
their feature representations. Conversely, frequently occurring predicates are often quite generic and do not clearly
express the actual visual relationships compared to less common predicates. Moreover, visual feature representa-
tions of relationships can significantly differ across various scenes, adding another layer of complexity [26]. Given
the impracticality of collection and annotation of enough training examples for object-predicate combinations rep-
resenting all possible visual relationships, there is a clear need to explore zero-shot approaches and augment the
conventional data-driven SGG techniques with external common sense knowledge. Pivoting towards zero-shot and
knowledge-centric strategies will enhance the prediction of unseen or infrequent visual relationships to improve
generalizability

::::::::::::
generalisability

:
in addition to solving the long-tailed distribution problem.

Approaches such as zero-shot [38, 129] and few-shot learning [37] have been investigated to address these chal-
lenges in SGG. Zero-shot learning leverages previously learned relationships to recognize

::::::::
recognise

:
visual rela-

tionships that have not been seen before. Conversely, few-shot learning utilizes
::::::
utilises a small number of labelled

samples to learn new relationships, which is advantageous when the collection of extensive labelled training data
is tedious, costly or impractical. By harnessing the power of heterogeneous KGs, these techniques can seamlessly
integrate common sense knowledge, facilitating the extraction of relevant relationship triplets , and thereby enhanc-
ing the prediction of infrequent and unseen visual relationships.

::::
The

::::::::::
NeSy4VRD

::::::
dataset

::::
[55]

:::::::
extended

:::
the

:::::::
original

::::
VRD

::::::
dataset

::::
with

:::::
more

:::::::::
meaningful

:::
and

:::::::::::::
non-ambiguous

:::::::::
predicates

:::
and

::::::::::
highlighted

::
the

::::::::
potential

::
of

::::::
formal

::::::::
semantics

::
in

:::::::::
addressing

::::
these

::::::::::
challenges. Additionally, knowledge transfer and distillation techniques [130, 131] present an-

other promising direction. Previously learned visual relationships can be leveraged by employing models trained on
diverse common sense knowledge bases, enhancing the generalization

:::::::::::
generalisation

:
capabilities and practicality of

SGG, and ensuring it remains relevant and effective in real-world scenarios.
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5.3. Leveraging Heterogeneous Knowledge

Most existing techniques rely on statistical and language priors, as well as KGs, as sources of external common
sense knowledge. However, the heuristic nature of statistical priors limits their generalizability

::::::::::::
generalisability, and

the limitations of semantic word embeddings can impact the performance of language priors, especially when deal-
ing with unseen or infrequent relationships. Individual KGs, such as WordNet [20] and ConceptNet [19], which
have been employed in SGG, provide lexical and text-based knowledge, encapsulating a variety of common sense
forms and notions. However, they fall short of providing a comprehensive understanding of visual concepts. In con-
trast, heterogeneous KGs, like CSKG [21], cover a significantly broader spectrum of common sense dimensions.
Heterogeneous KGs are presently the most diverse and comprehensive repositories of common sense knowledge,
encapsulating intricate structural and semantic characteristics of general concepts. The incorporation of these het-
erogeneous KGs to augment scene graphs has shown promising results in improving the overall efficacy of SGG
within a loosely-integrated NeSy approach [36]. However, their application in tightly-coupled SGG approaches and
mainstream visual reasoning tasks, such as VQAand image captioning

::::::::
especially

:::::
VQA, remains unexplored. These

heterogeneous sources are essential but underutilized
::::::::::
underutilised

:
in the infusion of prior common sense knowl-

edge in this field. Carefully integrating the heterogeneous KGs has the potential to deepen the interpretation of
complex scenes, leading to comprehensive and precise scene representations for intuitive visual reasoning.

The integration of heterogeneous common sense knowledge directly into the structure or feedback mechanisms
of deep neural networks

:::::
DNNs

:
for SGG can be an effective approach [132, 133]. This strategy can empower deep

neural networks
::::::
DNNs to learn the nuances of visual relationships more effectively, leading to more precise SGG

that may eliminate the need for subsequent scene graph refinement. While some research has ventured into this
area [39, 40], further exploration is needed to understand how the utilization

::::::::
utilisation

:
of heterogeneous common

sense knowledge can mitigate the challenges associated with SGG. Additionally, heterogeneous KGs can be in-
strumental in deriving rules about visual concepts and incorporating them into the learning process of deep neural
networks

:::::
DNNs

:
[134, 135] for scene understanding and visual reasoning.

::::
The

:::
rich

:::::
class

:::
and

::::::::
property

:::::::::
hierarchies

::
in

:::
the

::::::::::
VRD-World

::::::::
ontology

::::
[55]

::::
offer

:::::::::::
opportunities

:::
for

::::::::::
meaningful

:::::
OWL

:::::::::
reasoning

::::::::::
capabilities,

:::::
which

::::
can

::::
help

:::::::::
understand

::::::::::
relationships

::::
and

:::::::::
hierarchies

:::::::
between

::::::
objects

:::
and

:::::::::
predicates,

:::::::::
enhancing

:::
the

:::::
depth

:::
and

::::::::
accuracy

::
of

:::::
visual

::::::::
reasoning.

::::::::::
OWL-based

:::::
KGs

:::
can

::::
also

::::
guide

::::::
neural

:::::::
learning

:::
and

:::::::
provide

::::::::
structured

:::::::::
semantics

::
in

:::
the

::::::
context

::
of

:::::
scene

::::::::::
graph-based

:::::
NeSy

:::::
visual

:::::::::
reasoning

::::
[70]

:
. Continued research in this direction could unlock the full potential of

infusing common sense knowledge into scene understanding and visual reasoning techniques.

5.4. Temporal Relationships

The existing methods are proficient at processing images to extract semantic elements, infer visual relationships,
and infuse common sense knowledge for enhanced downstream reasoning. However, these methods fall short when
it comes to video data, where visual relationships can change over time. Current knowledge-based SGG methods
can only process each video frame individually, which is computationally inefficient and overlooks the temporal
patterns of visual relationships. This approach demands high computational resources and misses out on capturing
the temporal dynamics of visual relationships. While there have been attempts to develop SGG methods for video
data [136, 137] and corresponding datasets [138, 139], there is an opportunity to integrate external common sense
knowledge into these methods.

Addressing these gaps requires a multi-faceted approach. Firstly, object tracking [140] can be integrated to main-
tain continuity in recognizing

:::::::::
recognising

:
and following objects across frames. This ensures that the system under-

stands the trajectories of objects and their interactions over time, rather than treating each appearance as isolated.
Secondly, the temporal aspects of visual relationships [8] need to be incorporated. This would allow the system to
understand sequences, patterns, and changes in relationships over time, offering a richer interpretation of video con-
tent. For instance, understanding the temporal relationship can help discern if a person is "picking up" or "putting
down" an object. Thirdly, graph aggregation techniques [141, 142] can be employed to consolidate information from
multiple frames into a unified scene graph. This would provide a holistic view of the video, capturing both spatial
and temporal relationships in a compact representation. Such advancements would enhance scene understanding
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in videos and open doors to novel applications. For instance, by leveraging temporal dynamics and infusing com-
mon sense knowledge, systems could detect congestion patterns in traffic videos or pinpoint unusual activities in
surveillance footage of smart cities [143]. This would be invaluable for many domains, including urban planning
and security.

6. Conclusion

The integration of deep learning and common sense knowledge through neurosymbolic integration for scene
representation and visual reasoning is a promising research direction. We investigated this research direction in detail
by reviewing and classifying state-of-the-art knowledge-based neurosymbolic techniques for scene representation
and discussing relevant datasets, evaluation methods, key challenges, and future research directions. The survey
serves as a valuable resource for future research in the development of more effective scene representation and
visual reasoning techniques at the intersection of deep learning, knowledge infusion and neurosymbolic integration.
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