
Revisions based on Reviewers’ Comments 
Paper: Learning Semantic Association Rules from Internet of Things Data 
 
We would like to thank the reviewers for their constructive feedback! We have addressed the reviewer’s 
comments and answered their questions as described below. In our revised paper, we used blue font for 
the revised parts.  
 
For the rest of this document: 
 
Blue tone: refers to the feedback given by the reviewers. 
Green tone: describes our actions and answers. 
 
Reviewer 1 - Andreas Martin 
 
The paper presents a well-structured study on semantic association rule mining for IoT data, combining 
static knowledge graphs and dynamic sensor data. The proposed Autoencoder-based Neurosymbolic 
ARM method effectively reduces the number of rules while maintaining high data coverage. The 
experiments are rigorous and provide convincing evidence of the method’s effectiveness. 

Strengths: 
 - The integration of static and dynamic IoT data for association rule mining is a novel and well-motivated 
contribution. 
 - The evaluation is extensive, including comparisons with exhaustive and optimization-based ARM 
methods. 
 - The discussion on execution time, scalability, and variations of the method is thorough and relevant for 
future research. 

We would like to thank the reviewer for the kind words and for highlighting the strengths of our paper. 

1. The paper does not conform to the journal's layout and template. The formatting should be adjusted to 
align with the journal’s requirements, including section numbering, citation style, and figure placement. 

We are aware that our paper has a different template from the previously reviewed papers in the NeSy AI 
journal. We have contacted the editors and confirmed that there has been a template change, and the 
template that our paper uses is the correct one, as it follows the SAGE journal template on the Author 
Guidelines (https://neurosymbolic-ai-journal.com/content/author-guidelines) page of the NeSy AI journal 
(as of 26.03.2025). 

 
2. The methodology and experimental setup are dense, making it difficult for non-expert readers to follow. 
More intuitive explanations or a simplified example pipeline would improve accessibility. 



As suggested, we have updated the methodology (Semantic Association Rules from IoT Data) and 
experimental setup sections and made them easier to follow for non-expert readers. 

The Semantic Association Rules from IoT Data section now contains both more intuitive explanations of 
each of the pipeline steps, as well as a running example that we continuously refer to at the end of each 
step (Data preparation, Training and Autoencoder Architecture, and Rule Extraction from Autoencoders 
steps). 

The Evaluation section now starts with an intuitive explanation of the two experimental settings that we 
designed to evaluate the two contributions of our paper. 

3. The study relies solely on one language model for evaluating the ability to extract rules. A brief 
discussion on whether results would generalize to other models would strengthen the impact. 

We would like to clarify that we do not use any language model in any part of our study. The evaluation 
of our two contributions is done in 2 different experimental settings: i) we run multiple association rule 
mining methods (including ours) with and without semantic properties and compare the results to evaluate 
our semantic rule mining pipeline and to show how semantics can help learn generalizable association 
rules; ii) we compare ours and the state-of-the-art methods using standard association rule mining quality 
criteria (number of rules, data coverage, execution time, average support, confidence and association 
strength (Zhang’s metric)) to show that our rule mining method learns a more concise set of high-quality 
association rules with full data coverage (addressing the well-known rule explosion problem). 

 
4. The execution time analysis is detailed, but the discussion on real-world scalability could be expanded. 
The applicability of the method to large-scale IoT systems with a high number of sensors should be 
addressed. 

As suggested, we expanded the discussion subsection on the real-world scalability of our approach: 

“Real-world scalability. Real-world large-scale IoT data differs from the tabular datasets that most 
state-of-the-art ARM methods focus on. Each sensor is treated as a different data dimension, hence 
resulting in potentially extremely high-dimensional data especially upon including semantic properties. 
Therefore, utilizing neural networks’ capability to process high-dimensional data is essential. Both time 
complexity and execution time analyses (Experiments 1.2 and 2.1) show that our Neurosymbolic rule 
mining approach is scalable on large-scale IoT data. Extrapolating the execution times (training + rule 
extraction) shown in Figure 6, Aerial can scale up to tens of thousands of sensors on a laptop (see 
Hardware) in a day. The training is linear over the number of features (sensor measurements and 
associated semantic properties) and the number of transactions, and the rule extraction stage is polynomial 
over the number of feature classes. Algorithm 1 is parallelizable as test vectors per feature subsets are 
created and processed independently. Another advantage of our Neurosymbolic ARM approach over the 
commonly used algorithmic approaches, such as FP-Growth, is the option to leverage neural 
network–specific optimizations that significantly speed up execution and improve scalability. Some 
examples are batch normalization, both in training and when performing forward runs with the test 



vectors, and quantization and pruning to reduce model size and inference time without compromising 
performance.” 

5. The study is theoretically rigorous, but a more explicit discussion of practical implications would 
enhance its relevance. 

As recommended, we added a new discussion point to deliberate on the practical implications of our 
approach: 
“Practical implications. Besides knowledge discovery, ARM is a cornerstone of interpretable machine 
learning models such as rule list classifiers, which are the standard approach to high-stakes 
decision-making (Rudin 2019). Such models process a given set of association rules to find a small subset 
that can be used to explain a certain class label. One example of such high-stakes decision-making in the 
scope of IoT systems, continuing our WDN example, is leakage detection in WDNs. In this case, our 
proposed pipeline can be used to learn association rules with a class label (e.g., 0: no leakage, 1: leakage) 
on the consequent side (ARM with item constraints as explained in the Variations of Aerial discussion 
point). The rules are then passed to a rule-based classifier such as CORELS (Angelino et al. 2018) to 
build a classifier that can detect leakages. This example can easily be extended to other anomaly detection 
tasks, including digital twins of IoT systems. In addition, our proposed pipeline and rule mining method 
Aerial is integrated into a digital twin architecture of a WDN (Degeler et al. 2024) to detect such 
abnormalities.” 
 
 
Reviewer 2 - Marvin Schiller 
 
As far as I can judge, the presented methodology is well-motivated and executed and the results (in 
particular, the clear effect of the inclusion of semantics) appear highly relevant. I find the very detailed 
experimental analyses very instructive and easy to follow. The overall presentation, in terms of structure 
and language is excellent (nonwithstanding some minor comments below), and I appreciate the Figures 
and examples that illustrate the main workflow and the steps taken by the algorithm (like Figure 2 or 
Table 6 with examples of actual association rules). The source code of Aerial being available, well 
described and also at first glance quite clear is highly appreciated. 

We would like to thank the reviewer for the kind words and for highlighting the strengths of our paper. 

However, I noticed a gap in the otherwise convincing and clear presentation of the ideas, when putting 
myself in the shoes of someone who is trying to follow or replicate the presented work or adapt it to a 
potentially new domain (which I think would be the prime target group for this paper). 

First of all, it was not clear to me how exact numeric (sensor) measurement values in the input data relate 
to the intervals "s1 must measure between 23-31" shown as part of the mined association rules or the 
comparisons like shown in Table 2 (e.g. "p1.length > 100"). In Section "Pipelines" I noted that "the 
proposed approach is applied to, such as the type of discretization...", so I assume that such details have 
been left out, but at least in the case of the discussed water sensor networks, it would have been 
instructional to see how this was done. 



Based on the reviewer’s feedback, we expanded the explanation of the data preparation steps, including 
discretization, under the Pipeline section. Furthermore, we used the water distribution network example 
given in the Problem Definition section throughout the methodology section (Semantic Association Rules 
from IoT data) to exemplify various steps of the pipeline. 

 
Similarly, I understand that the semantics of classes in the ontology should not be understood in the sense 
of e.g. RDFS or OWL class hierarchies, but more like sets/tags. Still, I assume that the granularity of 
modeling applied to the ontology can have an effect on the performance of Aerial, so it would have been 
nice to see what was done here with a short example. Luckily I found some previous papers by the 
authors (e.g. https://arxiv.org/pdf/2310.07348) where this is more clear (showing a little part of 
 the generated knowledge graph). Taking the practicioner perspective, I would assume that if the 
ontological modeling was done naively (e.g. one class per sensor instance) the value of the semantics 
would be null. Therefore, I would have found it highly valuable to see a coherent running example 
included, not only for the syntax of expressions (like Table 2), but also of the translation to the enriched 
sensor data. Such a running example could help to pinpoint how the positive effect of semantics unfolds 
during the course of processing, which would put the cherry on the cake. From my perspective, this would 
be more crucial than exhaustive formal definitions of the underlying set theoretic (graph, language) 
structures. 

We agree with the reviewer’s assumption that the granularity of modelling applied to the ontology can 
have an effect on the performance of not only our Aerial rule mining method but also any other rule 
mining method that utilizes our pipeline for semantic rule learning. 

In line with the reviewer’s previous comment, we used the water distribution network running example, 
initially given in the Problem Definition section throughout the paper. We expanded the example and 
included a figure of our knowledge graph, and described how the properties from the knowledge graph 
would be used to enrich sensor data in the data preparation step (semantic enrichment step), and continued 
to use this example throughout the other subsections of the Pipeline section. The source code for 
constructing the knowledge graphs can be found in our repository. We further described at the end of the 
second-to-the-last paragraph of the Data Preparation section that the granularity of semantic modeling in 
the knowledge graph can impact the rule quality and listed it among the future works in the Conclusion 
section. 

 
Also, I was wondering to what degree typical knowledge-graph expressivity (like e.g. symmetry or 
transitivity of relations) would be picked up by the Aerial approach, to understand what degree of 
"semantification" is supported at all (again, thinking of making a dataset "Aerial-ready"). 

Indeed, we find the idea of capturing (and measuring) different levels of semantic expressivity using rules 
highly intriguing. We included it as a future research direction in the Conclusion and Future Work 
Section. 

 
Also, to me it is not entirely clear if a transaction refers to all data in a given timespan of all sensors 

https://arxiv.org/pdf/2310.07348


together with the properties from the entire related knowledge graph (as it seems according to "Input", 
and also the sets presented as "Input transactions" for the autoencoder), or if transactions are structured or 
even grouped/cut according to individual sensors and their vicinity  (as suggested by; "Property values 
from neighbors of node v can also be in the transaction set depending on the application."; from 
"Pipeline"). 

Transactions refer to all data in a timeframe of all sensors together with the properties from the related 
part of the knowledge graph, hence, one transaction per time frame. The latter sentence, “Property values 
from neighbors of node v can also be in the transaction set depending on the application”, refers to the 
fact that it depends on the application area to decide how much semantics to include in the transactions, 
i.e., up to first or second neighbors of where a sensor is placed in a knowledge graph. 

We further elaborated and exemplified this in the Data Preparation Section, second and the third 
paragraphs. 

Minor comments: 

● The abbreviation DL (for deep learning) is never spelled out (to distinguish, e.g. from 
"description logic", since semantic technologies are also mentioned) 

● In "Autoencoder Architecture": "lost function" --> "loss function" 
● In the Discussion: "Semantic enrichment increases execution time by 2-3 times for Aerial and 

3-12 times for exhaustive "methods, as shown in Experiment 2.1. --> Should read: "Experiment 
1.2" 

● In the conclusion: "lii" --> "ii" 
● "Note that the Aerial" --> skip "the" 

The comments are incorporated into the paper. 

 
Reviewer 3 - Savitha Sam Abraham 
 
Summary: 
The paper addresses a very relevant research problem, that of mining a concise set of rules from dynamic 
sensor data leveraging static semantic knowledge about the domain. The proposed solution employs an 
autoencoder for rule mining, controls the number of rules mined by using additional parameters like 
semantic threshold and number of antecedents, and the static semantic knowledge is incorporated by 
enriching the input to the auto encoder.  
 
We would like to thank the reviewer for recognizing the relevance and contributions of our paper. 

What is not clear to me is the semantic enrichment step in the pipeline. I understand that eventually the 
input to the auto encoder is just a vector that does not have information about the semantic class or 
relations. Is the auto encoder aware of what these values in the vector actually represent semantically? If 
so, it has not been explained well in the paper. 



The autoencoder is only aware of the vector representation of each feature category. Our rule extraction 
algorithm (Algorithm 1) keeps track of which category values are fed into which neuron of the 
autoencoder as a map of feature value pairs, and this information is used in rule extraction. For instance, 
line number 5 uses ‘X.features’ (X is the input transactions) to initialize an ‘initial test vector’ with equal 
probabilities per feature category, and line 6 marks feature categories in C (feature tuples), which are 
created in line 3 again using ‘X.features’, on the initial test vectors.  

We agree with and appreciate the reviewer’s comment that this connection between the vector 
representations and the tracking of their corresponding feature categories could be elaborated and 
emphasized more. We updated the Pipeline section and emphasized this connection under the first 
paragraph of Training and Autoencoder Architecture subsection, and in the Algorithm description 
paragraph of the Rule Extraction from Autoencoders subsection. 

I would like to clarify: I understand that the output is structured to capture the semantics of the values 
being predicted - by using softmax that predicts probabilities per class values. Could you explain this 
further. For instance, as in the example provided: feature f1 can take values a, b and feature 2 (f2) takes 
three possible values. In this case the output would have two probability distributions, one for f1 across 
values an and b and the other for f2. Is this right? If so, do you discretize the input feature values? 

The reviewer described the process correctly. The softmax function is applied to categories (classes) of 
each feature separately. As an example, assuming that there are only two features, f1 and f2, with two and 
three possible categories respectively, {a, b} and {c, d, e}, the output of our Autoencoder would be 2 
probability distributions, one for each feature. Therefore, ‘probability(a) + probability(b) = 1’, and 
‘probability(c) + probability(d) + probability(e) = 1’. We then apply binary cross-entropy loss as the loss 
function to each probability distribution separately, aggregate the results, and propagate the loss back 
(during training). We restructured our Pipeline section and formally introduced this process in the 
Training and Autoencoder Architecture subsection. 

Yes, we do discretize numerical values (please see the last part of the Training and Execution 
subsection, under the Setup section). Furthermore, in the new version of our paper, we dedicated a Data 
Preparation subsection under the Pipeline section to elaborate on all data preparation step including the 
discretization. Each subsection also includes a running example from the water distribution networks 
domain that we used in the Problem Definition earlier. 

Why is the complexity only depending on number of features and number of antecedents? Shouldn't it 
depend on the number of values possible for each feature as well? 

Yes, the reviewer is right in their assumption that the complexity also depends on the number of 
categories (possible values) per feature. In practice, the number of categories per feature (in comparison 
to the number of features) is often a small number, hence, we treated them as constants when considering 
the worst-case performance. As recommended by the reviewer, we re-formulated our complexity analysis 
to include the number of feature categories. We moved the analysis to the Appendix Time Complexity 
Analysis of Aerial to preserve the clarity and flow of the Methodology section. If the reviewer considers 
it more appropriate to include this analysis in the main text, we are open to reinstating it.  



More explanation required: It would be nice to explain the choice of auto encoder - why undercomplete 
and not over complete. Did the ARM-AE paper also use under complete AE? Also, the paper mentions 
that ARM-AE considers the input as consequent and output as antecedent. Why does it matter? Is the 
proposed method differentiating between causality and correlation? The AE predicts the feature that is 
highly likely to co-occur with another feature. How do you conclude that it is f1-->f2 and not f2-->f1. Do 
you provide both of these instances as input to the AE and test? 

We agree with the reviewer that the aforementioned questions are important to explain further in our 
paper, and we elaborated on them in the Training and Autoencoder Architecture and the Rule 
Extraction from Autoencoders sections. We further elaborated the differences of ARM-AE in 
Experiment 6 in the Appendices. Following is a brief summary of our revisions: 

Autoencoder Architecture. Under-complete autoencoders create a lower-dimensional representation of 
their input data and better capture the more significant aspects of the input data. Since the goal in 
association rule mining is to capture associations (co-occurrence) between feature categories, and also the 
goal of our paper is to capture a smaller number of rules to address the well-known rule explosion 
problem, we utilized an under-complete autoencoder and aimed to learn more prominent associations in 
the data, rather than all.  

Rule Extraction. The field of association rule mining aims to find co-occurrence of feature categories, 
and does not use ‘correlation’ or ‘causation’ in its terminology. In line with the literature, our approach 
learns co-occurrences (associations) of feature categories. In the rule extraction stage, our approach 
creates test vectors with marked feature categories, while the rest of the categories for other features have 
equal probabilities per category. The input test vector represents a partially defined environment via the 
marked features, and the autoencoder reconstructs the co-occurrences with the rest of the environment. 
Therefore, we hypothesize that the marked feature classes in the test vector represent the antecedents of a 
rule, while the reconstructed feature classes represent the consequents. However, note that our algorithm 
(Algorithm 1) tests both probabilities, continuing the previous example, whether f1(x)→f2(y) and also 
f2(y)→f1(x), x = {a, b}, y = {c, d, e}.  

The extensive evaluations showed that this approach indeed resulted in a smaller number of high-quality 
rules with full data coverage (Experimental Setting 2). 

ARM-AE is different both in terms of autoencoder architecture and rule extraction methodology. Its 
autoencoder is not under-complete but has equal dimensions in each layer, has a different loss function 
(MSE), and the loss function is not applied per feature, but for the entire output. In the rule extraction 
stage, it does not assign equal probabilities to the unmarked features, but leaves them as 0, and assumes 
that the output is the antecedent while the input is the consequent. We argue that due to these differences, 
ARM-AE resulted in low rule quality with a higher number of rules, both in their paper (33% confidence 
on the Nursery dataset and 50% confidence on the chess dataset) and also based on our results 
(experiment 6 in the appendices). 

Clarification: Is it right if I say that the proposed approach results in a concise set of rules only by 
controlling the input parameters - threshold and number of antecedents? If so, how do you ensure that 
high quality or significant rules are given priority to less significant rules? 



The major reason why our approach results in a concise number of rules is the usage of an 
under-complete autoencoder that captures more prominent features in the data in its code layer rather than 
all features which may lead to obvious rules. On the other hand, it is true that the input parameters, both 
threshold and number of antecedents, affect the number of rules, similar to other state-of-the-art 
association rule mining methods. As shown in Experiment 3, selecting higher similarity thresholds tends 
to result in an even more concise set of rules with higher confidence and association strength (Zhang’s 
metric). We reiterated this point in the Discussion section, in the Neurosymbolic methods can help 
learning a concise set of high-quality rules paragraph..  

In Table 5, it is seen that FP-G method with semantics has better support and coverage for all datasets 
except LeakDB. It also has better confidence than Aerial with semantics in all but one dataset (LBNL). 
How do you explain this? 

Table 5 alone is not enough to judge the ability of algorithms for mining high-quality rules. 

This table is the result of an experiment that aimed to show that including semantics results in rules that 
are more generically applicable in comparison to having no semantics, which results in rules being 
applicable to specific sensors only. The table shows that both the support and average rule coverage 
increase upon including semantics for both approaches, hence demonstrating that our hypothesis holds.  

The quality of the rules learned by our method and the baselines are compared in Experiment 2.2. Both 
Table 5 and Table 8 show that FP-Growth (Exhaustive) resulted in 10 to 100 times more rules than Aerial, 
leading to the well-known rule explosion problem. The data coverage of Aerial is 100% (1) despite its 
low number of rules (Table 8, note that the coverage in Table 8 refers to the data coverage of all rules, 
while the coverage in Table 5 refers to average rule coverage as stated in the title of each table). 
Furthermore, rules mined by FP-Growth have lower association strength (Zhang’s metric), especially in 
L-Town and LBNL datasets, meaning less informative (obvious) rules, which tend to have higher 
confidence values. We argue that this also explains the slightly lower (but still compatible) confidence 
score of Aerial in comparison to FP-Growth. Support levels, on the other hand, are not by themselves 
informative as for instance high support levels can be good at explaining trends in the data, while low 
support levels might be better at detecting anomalies.  

We revised the Experimental Setting 1: Semantics vs without Semantics subsection (first paragraph) to 
emphasize the fact that this setting does not compare the ARM algorithms but the impact utilizing 
semantics in rule mining. 

Writing: I feel the form given in Table 2 is difficult to understand - may be a better representation can be 
used. 

We shortened the item forms in Table 2 and in the Output section (first paragraph) to make them easier to 
understand. 
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