Reviewer 1:

The only addition | would recommend, given that this was
suggested by another reviewer as well, would be to have
a table summarising features that are/are not present in
this overall approach compared to other approaches
discussed in the SOTA. | agree that the narrative form is
capturing nouances, but it might leave the reader the
impression that some aspects are not as yes/no which
makes it hard to compare at a glance.

This would be also beneficial for papers citation and to
make the point re. the added value of the approach by
having a table with approaches and features with a
yes/no.

It would also somehow force the authors to carefully
select what are the key selling point of the approach and
make sure they are directly visible to others/readers.

We thank the reviewer for this suggestion. To make the key
selling points of our Neurosymbolic C-XAl approach
immediately visible, we have added Table 1 in Section 2
(“Related Work”) that compares our method against
representative SOTA XAl techniques on a common set of
features. This table highlights, for each method:

e whether it is white-box or black-box,

e whether it uses systematic (ontology-driven) concept
extraction,

e whether it provides quantitative precision/recall
error-margins,

e whether it is model-agnostic,

e whether it supports end-to-end automation, and

e whether it relies on large background knowledge.

We believe this tabular summary complements the
narrative and makes our contributions—and their
advantages over prior work—clear at a glance.

Table 1
Comparison of key features across explainability methods.

Pixcl-attribution Featurc-attribution Concept-based Zero-shot LLM-based |

Feature/Methods ’ cI

(CAM/Grad-CAM) | (LIME/SHAP) | (TCAV/ACE/CAR) | (CLIP-Disscct) | (GPT-4)
White-box reasoning | No No No No No Yes
Ontology-dri

ntology-driven No No Partially' No No Yes

concept pool
Precision and Recall No No No No No Yes
Model-agnostic Yes Yes Yes Yes. Yes Yes
End-to-end automation | No No No Partialy? No Yes
Leverages large 5

No No No No Yes Yes
background knowledge

Reviewer 3:

A1l: | would still strongly advise for a table that sums up
the literature review in a tabular format. If you believe
there are such nuances, you could point them out in
any cell that needs it. What | envision would be
something along the lines of Table 1 of this work:
"Improving rule-based classifiers by Bayes point
aggregation" (Bergamin et al., 2025). As you
mentioned, there are different nuances (degree of
supervision, concept pools, neural vs symbolic, etc.),
that can become a new column for each table.

We thank the reviewer again for this suggestion. We have now
incorporated Table 1 into the main text of Section 2. This table
compares representative XAl methods (including neural,
symbolic, supervision degree, concept-pool dynamics, and other
key axes) alongside our Concept Induction approach. Nuances
are noted in footnotes where necessary. We believe this
addition directly addresses your recommendation by providing
an at-a-glance taxonomy while preserving the detailed narrative
discussion.




Personally, | would prefer the table to be in the main
text.

Table 1
Comparison of key features across explainability methods.
Pixel-attribution Feature-attribution Concept-based Zero-shot LLM-based
(CAM/Grad-CAM) (LIME/SHAP) (TCAV/ACE/CAR) | (CLIP-Dissect) (GPT-4)

Feature/Methods

‘White-box reasoning No No No No No Yes

Ontology-driven

No No Partially' No No Yes
concept pool
Precision and Recall No No No No No Yes
Modcl-agnostic Yes Yes Yes Yes Yes Yes
End-to-end automation | No No No Partialy? No Yes
Leverages large No No No No? Yes Yes

background knowledge

Q2: While I understand the utility of having the
notions related to each section structured to

give the background needed at the beginning of
each section, some common preliminary notions
could be moved to a background section before
entering Section 3. This section could also help
provide a visual example to help understand all
the inputs/outputs involved in the system. In

my opinion, this would help to make the paper
less of a collection of existing published papers
and more of a comprehensive work on the

Topic.

A2: | think this is a very good idea that should be
incorporated to make the paper more accessible to

reader. | advice the authors to incorporate this point.

Thank you for this valuable suggestion. We have added a new
Section 3: Pipeline Overview which gathers all common
preliminaries in one place and includes a high-level diagram
(Figure 1) of our end-to-end system. This section briefly
describes:

o Neural network training (input images — CNN — dense
layer — output),

® Concept Induction and LLM labeling (ECIl and GPT-4 on
dense-layer activations),

o Hypothesis confirmation (statistical testing of
neuron-concept associations),

o Concept Activation Analysis (CAV/CAR SVMs on activations),
and

e Error-margin computation (precision/recall bounds for each
explanation).

3. Methodology Overview

Before diving into the detailed methodology, we provide a concise “Preliminaries” overview of our system ar-
chitecture, training protocol, and concept-analysis pipeline (see Figure 1). This roadmap highlights the key com-
ponents—neural network training, Concept Induction, and Concept Activation Analysis—each of which is fully
elaborated in the subsequent sections.

Convolutional Neural Network (CNN) to classify Images

z-Jaes |

Dense layer
(64 neurons)

Concept Induction (ECII)
operates on dense-layer
activations to generate
human-readable concept
labels.

Concept Activation Analysis
trains SVMs (CAV/CAR) on
activations  to  validate
(those concepts.

Fig. 1. Overview: An input image dataset passes through a CNN (ResNet50V2) architecture with hidden layers to produce a scene classification
output. The 64-unit dense layer (highlighted) feeds into two analysis modules: (1) Concept Induction (ECID), which generates human-readable
concept labels from neuron . and (2) Concept Analysis (CAV/CAR), which trains SVMs on the same activations to validate
those concepts.

‘We train a convolutional neural network (ResNet50V2) on the ADE20K scene-classification task (10 classes,
around 6200 images). All layers are fine-tuned for 30 epochs with early stopping (patience 3, Ir=0.001) using
categorical cross-entropy loss. This yields a stable 87% validation accuracy. ensuring the model is sufficiently
reliable for downstream explanation without over- or under-fitting.

Next, we extract explanations at the network’s final dense layer (64 neurons). In the Concept Induction step,
each neuron’s strongly activating images ( atleast 80% of its peak response) and weakly activating images (atmost

Q3: It is quite strange that only the

We appreciate your continued attention to model-performance




Resnet50V2 achieved high validation accuracy
scores, while other architectures show a big gap
with the training accuracy, especially when
using early stopping. Do other metrics highlight
this issue (e.g., top-k accuracy) as well? Could
you compare the confusion matrices? Also, is
patience=3 / learning rate=0.001
sufficient/necessary to fine-tune this task?
Usually, you could get better results in
fine-tuning with lower learning rates and/or
providing more epochs. While | understand the
argument of the low need for high accuracy, the
explanations should be made on a sufficiently
reliable/performant model, and | can't see how
Resnet50v2 has such a wide margin compared to
the classic Resnet50.

A3: | still have my doubts on the soundness of this
part of the experimental setting, due to the lack of
systematic hyperparameter tuning, where
hyperparams were set ad-hoc, and the lack of
additional data regarding other metrics, confusion
matrices (or even just training losses plots, etc.). As
you are very well aware, this could lead to unwanted
under/overfitting, and other uncontrolled model
behavior. I still believe this is a weaker side of this
paper, but | agree this was not the focus to begin
with. Therefore, | do not have explicit requests for this
point (but, still, the authors are welcome to improve
it if they deem it necessary.)

details. We performed basic sweeps over learning rates
(1e-2, 1e-3, 1e-4), patience (3, 5, 10), and up to 50 epochs.
ResNet50V2 (Ir = 0.001, patience = 3) gave stable ~87%
validation accuracy with no over- or under-fitting. Since our
focus is on explanation fidelity rather than peak classification
accuracy, we believe these settings are sufficient and have
retained the original text.

Q4: | am not sure of the usefulness of Table 6-7-8.
In particular, they show the raw performance in
both training and test settings. Wouldn’t a

chart be more informative, especially while
comparing the results of GPT/CLIP/Concept
Induction? Those tables could be moved to an
Appendix if possible. Also, | am unsure of the
utility of having the training accuracy reported

as well, if not discussed in the paper.

A4: Thank you for your response to my comment
regarding Tables 6, 7, and 8. | understand that you
were unable to devise a meaningful way to visualize
the data without adding redundancy or length to the
paper. One option could be to craft a bar chart for
each row. These bar charts could be sorted by a
target metric (e.g., either CAR or CAV test
accuracy). To improve readability, they could be
split across multiple columns to reduce length.

We appreciate the suggestion, and moved the full per-concept
Tables 7-9 into Appendix A. Our current Table 12 already
provides exactly that “at-a-glance” comparison: it reports, for
each method and kernel (CAV/CAR), the mean, median, and
standard deviation of test accuracies, as well as the count of
concepts in high (2 90%), medium (80—-89%), and low (< 80%)
accuracy bins. Likewise, Table 7 and Table 11 gives the
Mann—-Whitney U test results that quantify statistical
significance across methods. Both tables are discussed in detail
in the Results section, where we call out their key take-aways.
We therefore believe these existing summary tables fully
address your concern.

We use Concept Induction, CLIP-Dissect, and GPT-4 as Concept Extraction mechanisms. Thereafter we use
Concept Activation analysis to measure to what extent such concepts are identifiable in the hidden layer activation
space. We adopt two different kernels through CAV and CAR to train an SVM and then test the classifiers on unseen
image data. Tables 7. 8. and 9 represent the test accuracies for the concepts extracted by Concept Induction, CLIP-
Dissect, and GPT-4. Table 10 represents the results of the Mann-Whitney U test performed over the test accuracies
obtained from all 3 approaches. Table 15 shows the Mean, Median, and Standard Deviation of the test accuracies
for each of the 3 approaches.




Another option could be to show a summary table
instead, where you report mean accuracy and std
scores for each category, and move the table to the
supplementary materials. In essence, in order to be
useful, the tables need to visually convey what you
want to compare. If you take the tables in isolation,
and let them be read by an external reader, this
table shows that sometimes CAR and CAV work
better under the test accuracy metric, sometimes
not. I'm not sure if this should be the purpose of
these tables. Could you briefly comment on what do
you believe their purpose is? In this way, | could
provide a more precise advice on their
presentation.

Table 15

Mean, Median, and Standard Deviation (SD) of Concept Activation Analysis Test Accuracies, and Count of Concepts with their Concept Clas-
sifier Test Accuracies binned into 3 regions — High (90-100%), Medium (80-89%), and Low (<80%) relevance

Method CAV CAR Count of Concepts

Mean  Median SD | Mean Median SD | 90-100%  80-89%  <80%

Concept Induction | 0.9154  0.9230  0.0449 | 0.9150  0.9310 0.0465 46 22 1

CLIP-Dissect 09160 09146  0.0389 | 0.9259  0.9293 0.0443 17 5 0

GPT-4 0.8757  0.8863  0.0817 | 0.8887  0.9024 0.0690 11 9 1

For the Concept Activation Analysis evaluation (see Table 15), Concept Induction yields 69 unique concepts
with Mean Test Accuracy of 0.9154 (CAV) and 0.9150 (CAR). CLIP-Dissect identifies 22 concepts with Mean Test
Accuracy of 0.9160 (CAV) and 0.9259 (CAR). GPT-4 produces 21 concepts with Mean Test Accuracy of 0.8757
(CAV) and 0.8887 (CAR). Although, based solely on the numeric values of Mean Test Accuracy, CLIP-Dissect
demonstrates a slightly superior performance compared to Concept Induction, and GPT-4 performs the least, we
contend that the substantially higher number of concepts generated by Concept Induction allows CLIP-Dissect to
achieve a marginally higher test accuracy. By considering the top 22 (equal to the number of concepts generated
by CLIP-Dissect) test accuracies of concepts extracted by Concept Induction, the Mean Test Accuracy increases to
0.9599 (CAV) and 0.9584 (CAR). For statistical confirmation, we conduct a p-value test for K-fold cross validation,
wherein all concepts in Concept Activation analysis achieve p < 0.05. Using a Mann-Whitney U test, we statistically
ascertain that CLIP-Dissect outperforms GPT-4 in terms of CAR, and Concept Induction surpasses GPT on CAV
(see Table 10).

Q5: 9c. P27,r9: “it is equally vital to thoughtfully
design this pool”; could you better explain what
are the risks of a poorly designed pool?

A5: As the manuscript says, "neglecting this aspect
results in overlooking crucial concepts essential for
gaining insights into hidden layer computations.”
From an external reader, this sentence seems fuzzy
and not precise enough; my request was simply to
expand this explanation to make it more intuitive to
an external reader, by adding additional context.

While the preceding paragraph already illustrates via a
medical-diagnosis example why careful pool curation matters,
we have now also explicitly named the two concrete risks in the
very sentence.
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useful solution, especially when time is limited. However, for detailed concept-based analysis, preparing background
knowledge and leveraging Concept Induction is crucial. For CLIP-Dissect/GPT-4, it is unclear how to meticulously
craft the pool of candidate concepts since it is difficult to manually curate a static set that is broad enough to

capture all pertinent concepts while remaining specific enough to avoid noisy or ambiguous labels. By employing a
background knowledge base, it is possible to define a large pool of potential explanations, tailored to the application
scenario, with additional relationships among concepts. For example, in a medical diagnostic application, an ideal
candidate pool would include specialized clinical terminology (e.g., “cardiomegaly” or “pleural effusion”) that is
essential for accurate interpretation — an adjustment that is hard to achieve with a generic vocabulary. Concept
Induction facilitates deductive reasoning utilizing this background knowledge, inherently offering transparency and
flexibility in shaping the candidate concept pool.

While it is important to investigate methods that assess the relevance of concepts in hidden layer computations
within a given candidate pool, it is equally, if not more, vital to thoughtfully design this pool. Neglecting this aspect
could result in— (a) missing domain-critical concepts essential for gaining insights into hidden layer computations
and (b) introducing noisy or ambiguous concepts that can lead to spurious activations and misleading explanations.
Our ontology-driven approach mitigates both risks by integrating rich background knowledge and extract meaning-
ful concepts from it.

Q6: The limitations of the work could be summed
up in a specific section at the end of the paper
(e.g.: activation patterns involving more than
one neuron, requirement of labeled data, single
dataset analysis, concept formation across
multiple layers). Mitigations and/or suggestions
for implementing these improvements could be
reported as well.

A6: | believe it would be helpful to have such a
section, at the very bottom of the paper (before
conclusions), to sum up concisely all the limitations
of the methods presented. They should encompass
all the previous sections presented.

Thank you for this suggestion. We agree that an explicit,
consolidated “Limitations and Future Work” section will help
readers quickly see the boundaries of our current study and our
plans to address them. Accordingly, we have added a new
Section 7 just before the Conclusion.

7. Limitations and Future Work

Despite the strong performance and interpretability demonstrated by our neurosymbolic Concept Induction frame-
work, several limitations remain:

1. Single-layer focus:- We restrict our analysis to a single dense layer’s activations, yet deep networks encode
hierarchical features across many layers. In future work, we will extend Concept Induction and Concept Ac-
tivation Analysis to convolutional layers and to combinations of neurons, to reveal how concepts emerge and
interact throughout the network.




2. Dependence on labeled data:- Our error-margin computations and positive/negative concept sets require im-
age annotations, which may be costly to obtain. We plan to explore semi-supervised or weakly supervised
approaches—e.g. leveraging pseudo-labels or active learning—to reduce annotation requirements while main-
taining explanation fidelity.

3. Single-dataset evaluation:- All experiments use the ADE20K dataset, which may limit generality. We intend
to validate our approach on additional domains (such as medical or satellite imagery) and on other network
architectures (e.g. Vision Transformers), to assess robustness across data modalities and model families.

4. Fixed background-knowledge scale:- We employ a 2 million-class Wikipedia-derived ontology, but domain-
specific tasks may benefit from smaller, more focused knowledge graphs. Future work will investigate the
trade-offs of ontology size and specificity, including experiments with specialized medical or scientific on-
tologies.

By acknowledging these limitations and outlining concrete next steps, we aim to guide future enhancements of
neurosymbolic explainability methods.

Q7: 1. Regarding the CAR non-linear kernel, some
details (e.g., the value chosen for the bandwidth of
the RBF kernel) are missing.

A7: 1 could not find an updated reference into the
paper (I could have missed it since it was not
pointed out by the authors in their answer). | advise
the authors to fully disclose the hyperparameters of
their kernel methods to enhance the reproducibility
of their work.

CAR classifiers efficiency does not largely depend on Kernel
width. For kernel width tests by using Bayesian optimization and
a validation concept — it does not vary the results in any
significant way.

We have found that Gaussian RBF kernels indeed gives the best
result over linear/polynomial.

Number of examples to train a concept classifier - we have seen
that anything above 200 results in diminishing rate of return.




