Response to Reviewers

Reviewer 1

We thank the reviewer for their comments. We have strengthened the mentioned sections; com-
ments are addressed in order (as extracted from the review text), below.

1. Remark: While the evaluation considers many knowledge graph embedding methods such

as Transk, ComplEx, DistMult, RESCAL, RotatE, | think these methods cannot leverage the
new information added in the extended knowledge graphs. For example, authors acknowl-
edge that ’relations P31 and P279 are not symmetric; therefore DistMult, which can encode
symmetric relations, cannot leverage P31 and P279 edges’. Following this line of reasoning,
P279 (subclassof) is a hierarchical relation, which should be evaluated with methods that
can encode hierarchies such as [refs]. Also in the case of P31 relation, it is well known that
it is a N-1 relation, therefore a method encoding N-1 relations (such as TransD) should be
chosen for this property. In summary, | think the evaluation does not match the hypothesis
the authors intend to propose.
Response: We agree that relations such as P31 (instance-of) and P279 (subclass-of) are in-
herently asymmetric and hierarchical, which classical models like DistMult are not well-suited
to encode, we address this in 5.2. We felt that this was easy to include, due to the nature of
the library that we were using (i.e., DGLKE), so we could do a comparison across all imple-
mentations it contained. As such, we left out TransD as an oversight. We have run the same
experiments with TransD as we did for the other methods, and we have added them to the
tables found in the paper. For reference, we also include them here, in Tables [1] & [2|

Evaluation across KGs Evaluation with T537
Model \ Metrics FB15k-237 \ FB15k-238 \ FB15k-239 ||| FB15k-238 \ FB15k-239
MRR 0.210 0.228 0.259 0.0032 0.0030
MR 330.50 287.87 155.05 || 7168.6280 | 6828.5341
TransD | HITS@1 0.116 0.126 0.146 0.0025 0.0023
HITS@3 0.249 0.277 0.302 0.0027 0.0025
HITS@10 0.390 0.419 0.485 0.0033 0.0030

Table 1: TransD model evaluation on FB15k variants. Metrics shown for FB15k-237 are: Mean
Rank (MR), Mean Reciprocal Rank (MRR), and Hits@K (K=1,3,10). Other values are to be filled
after evaluation on FB15k-238 and FB15k-239.

2. Remark: "Fig. 1 is very useful, it is not self-explainable. Maybe adding edge labels such as
‘type_of’ or 'subclass_of’ and adding a richer caption can help to improve this figure."
Response: Unfortunately, we could not devise a way to add edge labels, without it becoming
too cluttered. However, we expanded the figure caption to more clearly identify the “type_of”
and “subclass_of” relationships, arrow color and presentation meaning and various node
types such as color and what the letters represent, to improve interpretability without needing
to refer back to the introduction.

3. Remark: "Section 3.5 point (d): t-sne and umap should be t-SNE and UMAP maybe."
Response: We have corrected these consistently throughout the paper.

4. Remark: “There are several references pointing to ArXiv while published versions of those
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Moss Masg
Th38—237 Th38—237 Tos9—238 | Thso—237
MRR 0.3784 0.0143 0.0006 0.2615
MR || 100.8378 | 8476.8943 | 8628.7851 | 128.5453
HITS@1 0.2485 0.0132 0.0000 0.1510
HITS@3 0.4569 0.0143 0.0002 0.3061
HITS@10 0.6049 0.0151 0.0007 0.4746

Model Metrics

Both

Table 2: This table reports the results of our ablation-like study with TransD, where we change
which component of the data against which we evaluate. M, denotes a model being trained with
FB15k-z. T,_, denotes test data, where = — y refers to the set difference resulting in data that can
only be found in FB15k-z.

papers exist."
Response: We have corrected these consistently throughout the paper.

Reviewer 2

We thank Reviewer 2 for their remarks and and suggestions on improving the state-of-the-art and
flow of the manuscript. Where appropriate, we have made corresponding changes, explained
below.

5. Remark: “The introduction of the synthetic datasets in the Introduction and Section 3 needs

better contextualization. | guess the synthetic data somehow tries to replicate real-world data
patterns, to be insightful. It would be interesting to add examples for each of the SKG graphs
introduced for the reader to understand what they could represent in reality."

Response: We have added real world examples in the A.1 section of the Appendix and also
enhanced Figure 2’s caption in order to be more explicit.

. Remark: “I didn’t understand the motivation for SKG-237. Other than having a similar num-
ber of nodes and degrees with FB15k-237, does it replicate any important structural patterns?
If the patterns are just random, then isn’t it naturally expected that performance is bad on it?
In that case, | find that it doesn’t add much to the insights and the story would be clearer
without it. If it does replicate important patterns, please clarify and elaborate Section 3.3 (too
short at the moment).”

Response: The purpose of this investigation was not just to replicate degree distributions
and node counts, but also to evaluate what KGE models actually expect in terms of knowl-
edge (or data) to produce effective embeddings. Specifically in this case, we study a rather
aggressive change: the naive removal of any implicit semantics, and thus produce a graphs
that superficially globally mirrors a established benchmark dataset. This is a step that distin-
guishes between the impact of structure and semantics in link prediction tasks. Its poor per-
formance is informative, indicating that structure is likely more important than we realise and
that real-world knowledge graphs depend on more than just degree or volume. Our experi-
ments with SKG-237 provide evidence for this observation and initiate a conversation about
the types of structural assumptions that KGE models implicitly expect. We have updated
the description of SKG-237 in Section 3.3 to give a more thorough and precise explanation
of its structural features. We make clear which characteristics, like degree clustering were
purposefully kept and which were not.



7.

10.

Remark: “I find the discussions of KGE performance over SKG isotopes (in Section 5.1),
which seems to be the main story of the paper, too brief. The last paragraph cuts in the
middle, so | wonder if there may have been a problem with the submission."

Response: Thank you for pointing out the omission. We are not exactly sure what happened
to the original discussion. However, the discussion in Section 5.1 is now completed and
to clarify the observations and emphasize our main outcomes. The relationship between
richness and learning persists. Caution must be taken when introducing structural complexity
and semantic distance, as these may enhance representational richness while also making
the link prediction task more challenging for traditional embedding models.

Remark: “Another concern is that the second contribution, on the visual analysis of the
embeddings, is impossible to review because it is present only in appendix and not attached
to the submission. If the authors submit a revision, please include the appendix, or at least
include the most important Figure in the main paper (since it is even part of the abstract)."
Response: Appendix is now correctly attached in our submission. We also prompt you
to explore our GitHub repository as well were all of those vizualizations reside: https:
//github.com/kastle-lab/kge-impact

Remark: “I don’t understand how it's possible to create dataset splits for KGEs on let’s say
SKG-4, if you explain in Section 3 that they all have disconnected components. For SKG-4,
every single triple has an object with a node degree of 1. If you put any triple in valid/test,
then it means that its object will never be seen in training. But KGE methods are designed
for transductive link prediction; their results will be random for nodes that are never seen in
training. How did you manage the splits?"

Response: It is true that SKG-4 has a lot of disconnected components and that many triples
involve nodes with degree 1, which means that objects only appear once. However, our
choice to create dataset splits by randomly shifting and splitting triples is in line with stan-
dard knowledge graph embedding (KGE) benchmarking methods. The splits purposefully
maintain the realistic challenge of learning in sparse and uneven graph structures, which is
a crucial scenario for real-world applications where unseen nodes or rare entities frequently
occur (Wang et al., 2017) [5]. This is despite the fact that KGE methods are naturally trans-
ductive and depend on entities being seen during training (Bordes et al., 2013; Trouillon et al.,
2016) [1}, 4]. Maintaining this random split also allows us to thoroughly assess how resilient
embedding techniques are to this sparsity and how well they adapt over a small context, as
seen in (Sun et al., 2019) [3]. Moreover, the SKG datasets are fabricated benchmarks cre-
ated to examine the basic behaviors of embedding algorithms under controlled variations in
structure, including extreme scenarios like nodes with degree one, in addition to being used
for standard transductive link prediction (Dettmers et al., 2018; Wang et al., 2018) [2, [6].
Therefore, rather of working against the expectations of transductive learning, our method
encourages the evaluation to include edge situations that highlight drawbacks and direct fu-
ture model advancements. To be clearer, we have adapted Section 3 to explicitly specify the
dataset splits. This clarification removes previous ambiguity and strengthens the justification
of our experimental setup.

Remark: “Table 6: How are the degree centrality values computed? Maybe I'm using the
wrong concept, but | thought it would be the number of edges (in or out) connecting to a
node. Then doesn’t the graph in SKG4 have at least 1 edge connecting to each node? Same
question for the other graphs. | expected the average degree to then be greater than 1.0, |
don’t understand how the values 0.003 etc. are obtained."


https://github.com/kastle-lab/kge-impact
https://github.com/kastle-lab/kge-impact

11.

12.

13.

14.

Response: The degree centrality values in Table 6 were computed using NetworkX’s nor-
malized degree centrality function. This metric is defined as the node’s degree divided by the
maximum possible degree (i.e., number of nodes minus one), resulting in values normalized
between 0 and 1. Therefore, a value like 0.003 indicates that the node connects to about
0.3% of all other nodes, consistent with the sparse and large graphs in SKG-4 and others.
Additionally, we have adapted Section 3.7 to be more precise regarding these computations
to avoid ambiguity.

Remark: “Table 6: What does the difference column represent?”

Response: The difference column showcases the change in values between graphs ( up
for larger down for smaller ). The caption of tables 6 and 7 are expanded now to avoid any
ambiguities.

Remark: “l think Figure 1 could be more clear by adding types on the edges that are different.
For example, right now, for SKG5 it is stated that 'the lavender property is always attached to
the top node’. But it’s not explicit what defines a 'top node’ (graphs don’t have orientations);
| assume what defines it is the type of the edge."

Response: We have enhanced Figure 1 expanding the figure caption, explaining the
“type_of” and “subclass_of” relationships, arrow color and presentation meaning and various
node types such as color and what do the letters represent in order to improve interpretability
without needing to refer back to the introduction.

Remark: "Figure 2 caption cuts in the middle."
Response: Thank you for pointing out the omission; we have completed the caption.

Remark: “Section 5.2, line 50: In fact, DistMult can only represent symmetric relationships,
since its score function cannot model asymmetry.”

Response: Thank you for the correction; we have made that explicit in the paper. We also
prompt you to take a look at remark [1.] where we also evaluate our graphs using another
appropriate model.
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